Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer

Abstract

The p53 tumor suppressor protein induces apoptosis in response to genotoxic and environmental stresses. Recent studies have revealed the existence of a transcription-independent mitochondrial p53 apoptotic pathway; however, the mechanism that regulates its translocation to the mitochondria has been unknown. In this study, we show that the tumor suppressor Tid1 forms a complex with p53 under hypoxic conditions that directs p53 translocation to the mitochondria and the subsequent initiation of the mitochondrial apoptosis pathway. Loss of Tid1 expression abrogated p53 translocation to the mitochondria and inhibited apoptosis, whereas the over-expression of Tid1 promoted p53 mitochondrial localization and apoptosis. Tid1's mitochondrial signal sequence and DnaJ domain were both required for the movement of the p53–Tid1 complex from the cytosol to the mitochondria. When Tid is over-expressed in cancer cell lines expressing mutant p53 isoforms defective in transcriptional activity, mitochondrial localization and pro-apoptotic activities of the mutant p53 proteins was restored. Our results establish Tid1 as a novel regulator of p53-mediated apoptosis, and suggest that therapies designed to enhance Tid1's function in promoting mitochondrial localization of p53 and apoptosis could be an effective therapy in many cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 6
Figure 3
Figure 2
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson AR, Weaver AM, Cummings PT, Quaranta V . (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Bissonnette N, Wasylyk B, Hunting DJ . (1997). The apoptotic and transcriptional transactivation activities of p53 can be dissociated. Biochem Cell Biol 75: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopin V, Toillon RA, Jouy N, Le Bourhis X . (2002). Sodium butyrate induces P53-independent Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135: 79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yu JH, Wu JN, Tashiro S, Onodera S, Minami M et al. (2007). P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 28: 1057–1066.

    Article  CAS  PubMed  Google Scholar 

  • Dumont P, Leu JI, Della III PA, George DL, Murphy M . (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33: 357–365.

    Article  CAS  PubMed  Google Scholar 

  • Edwards KM, Munger K . (2004). Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 23: 8419–8431.

    Article  CAS  PubMed  Google Scholar 

  • Erster S, Mihara M, Kim RH, Petrenko O, Moll UM . (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24: 6728–6741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman JS, Lowe SW . (2003). Control of apoptosis by p53. Oncogene 22: 9030–9040.

    Article  CAS  PubMed  Google Scholar 

  • Gomez JA, Gama V, Yoshida T, Sun W, Hayes P, Leskov K et al. (2007). Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans 35: 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Giaccia AJ . (2005). The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331: 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Rowan S, Shaulian E, Vousden KH, Oren M . (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9: 2170–2183.

    Article  CAS  PubMed  Google Scholar 

  • Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B et al. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot spot’ mutant phenotypes. Cell Growth Differ 1: 571–580.

    CAS  PubMed  Google Scholar 

  • Kim SW, Chao TH, Xiang R, Lo JF, Campbell MJ, Fearns C et al. (2004). Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res 64: 7732–7739.

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Hayashi M, Lo JF, Fearns C, Xiang R, Lazennec G et al. (2005). Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res 65: 8784–8791.

    Article  CAS  PubMed  Google Scholar 

  • Kim BM, Choi JY, Kim YJ, Woo HD, Chung HW . (2007). Desferroxamine (DFX) has genotoxic effects on cultured human lymphocytes and induces the p53-mediated damage response. Toxicology 229: 226–235.

    Article  CAS  PubMed  Google Scholar 

  • King FW, Wawrzynow A, Hohfeld J, Zylicz M . (2001). Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20: 6297–6305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokontis JM, Wagner AJ, O'Leary M, Liao S, Hay N . (2001). A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene 20: 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6: 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Garrido N, Spelbrink JN, Suzuki CK . (2006). Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J Biol Chem 281: 13150–13158.

    Article  CAS  PubMed  Google Scholar 

  • Lukashchuk N, Vousden KH . (2007). Ubiquitination and degradation of mutant p53. Mol Cell Biol 27: 8284–8295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM . (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26: 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Mooney LM, Al-Sakkaf KA, Brown BL, Dobson PR . (2002). Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br J Cancer 87: 909–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy ME, Leu JI, George DL . (2004). p53 moves to mitochondria: a turn on the path to apoptosis. Cell Cycle 3: 836–839.

    Article  CAS  PubMed  Google Scholar 

  • Nemajerova A, Erster S, Moll UM . (2005). The post-translational phosphorylation and acetylation modification profile is not the determining factor in targeting endogenous stress-induced p53 to mitochondria. Cell Death Differ 12: 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Perfettini JL, Kroemer RT, Kroemer G . (2004). Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol 6: 386–388.

    Article  CAS  PubMed  Google Scholar 

  • Pietsch EC, Perchiniak E, Canutescu AA, Wang G, Dunbrack RL, Murphy ME . (2008). Oligomerization of BAK by p53 utilizes conserved residues of the p53 DNA binding domain. J Biol Chem 283: 21294–21304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puthalakath H, O-Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129: 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  • Sansome C, Zaika A, Marchenko ND, Moll UM . (2001). Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488: 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR . (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275: 7337–7342.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yu J, Zhang L . (2007). The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 104: 4054–4059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LH, Okaichi K, Ihara M, Okumura Y . (1998). Sensitivity of anticancer drugs in Saos-2 cells transfected with mutant p53 varied with mutation point. Anticancer Res 18: 321–325.

    PubMed  Google Scholar 

  • Wolff S, Erster S, Palacios G, Moll UM . (2008). p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res 18: 733–744.

    Article  CAS  PubMed  Google Scholar 

  • Wolff S, Erster S, Palacios G, Moll UM . (2008). p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severly disrupts mitochondrial membrane integrity. Cell Res 18: 733–744.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs F Jirik, S Robbins, P Forsyth, K Riabowol, S Grewal and X Feng for their invaluable suggestions, critical review of the paper and encouragement. This work was supported in part by grants from the Alberta Cancer Research Institute (23123), the Canada Research Chairs Program (950-203751) and the Canada Institute of Health Research (MOP97962) to SWK. BYA and DT were supported by a postdoctoral fellowship and graduate scholarship, respectively, from the Alberta Cancer Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S -W Kim.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, B., Trinh, D., Zajchowski, L. et al. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29, 1155–1166 (2010). https://doi.org/10.1038/onc.2009.413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.413

Keywords

This article is cited by

Search

Quick links