Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The MYCN oncogene is a direct target of miR-34a

Abstract

Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT–PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abel F, Sjoberg RM, Krona C, Nilsson S, Martinsson T . (2004). Mutations in the N-terminal domain of DFF45 in a primary germ cell tumor and in neuroblastoma tumors. Int J Oncol 25: 1297–1302.

    CAS  PubMed  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Attiyeh EF, London WB, Mosse YP, Wang Q, Winter C, Khazi D et al. (2005). Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353: 2243–2253.

    Article  CAS  PubMed  Google Scholar 

  • Bader SA, Fasching C, Brodeur GM, Stanbridge EJ . (1991). Dissociation of suppression of tumorigenicity and differentiation in vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Differ 2: 245–255.

    CAS  PubMed  Google Scholar 

  • Bagchi A, Papazoglu C, Wu Y, Capurso D, Brodt M, Francis D et al. (2007). CHD5 is a tumor suppressor at human 1p36. Cell 128: 459–475.

    Article  CAS  PubMed  Google Scholar 

  • Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M . (2005). Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 11: 1119–1128.

    CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP . (2003). MicroRNAs: at the root of plant development? Plant Physiol 132: 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    CAS  PubMed  Google Scholar 

  • Bieche I, Khodja A, Lidereau R . (1998). Deletion mapping in breast tumor cell lines points to two distinct tumor-suppressor genes in the 1p32-pter region, one of deleted regions (1p36.2) being located within the consensus region of LOH in neuroblastoma. Oncol Rep 5: 267–272.

    CAS  PubMed  Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN et al. (1993). Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13: 5216–5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodeur GM . (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur GM, Sekhon G, Goldstein MN . (1977). Chromosomal aberrations in human neuroblastomas. Cancer 40: 2256–2263.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL et al. (2004). cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 5: 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung TH, Lo KW, Yim SF, Poon CS, Cheung AY, Chung TK et al. (2005). Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol Oncol 96: 510–515.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3.

    Article  PubMed  Google Scholar 

  • Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A et al. (2005). BioMart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21: 3439–3440.

    Article  CAS  PubMed  Google Scholar 

  • Eggert A, Grotzer MA, Zuzak TJ, Ikegaki N, Zhao H, Brodeur GM . (2002). Expression of Apo-3 and Apo-3L in primitive neuroectodermal tumours of the central and peripheral nervous system. Eur J Cancer 38: 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Ejeskar K, Krona C, Caren H, Zaibak F, Li L, Martinsson T et al. (2005). Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer 5: 161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M et al. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Fong CT, Dracopoli NC, White PS, Merrill PT, Griffith RC, Housman DE et al. (1989). Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA 86: 3753–3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO et al. (1999). Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18: 4948–4957.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto N, Ichikawa D, Arakawa Y, Date K, Ueda S, Nakagawa Y et al. (1995). Frequent deletions of material from chromosome arm 1p in oligodendroglial tumors revealed by double-target fluorescence in situ hybridization and microsatellite analysis. Genes Chromosomes Cancer 14: 295–300.

    Article  CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrich KO, Fischer M, Mertens D, Benner A, Wiedemeyer R, Brors B et al. (2006). Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 12: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Hogarty MD, Liu X, Guo C, Thompson PM, Weiss MJ, White PS et al. (2000). Identification of a 1-megabase consensus region of deletion at 1p36.3 in primary neuroblastomas. Med Pediatr Oncol 35: 512–515.

    Article  CAS  PubMed  Google Scholar 

  • Hosoi G, Hara J, Okamura T, Osugi Y, Ishihara S, Fukuzawa M et al. (1994). Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73: 3087–3093.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH . (2006). MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 351: 192–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl NE, Gee CE, Alt FW . (1984). Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 226: 1335–1337.

    Article  CAS  PubMed  Google Scholar 

  • Kong XT, Valentine VA, Rowe ST, Valentine MB, Ragsdale ST, Jones BG et al. (1999). Lack of homozygously inactivated p73 in single-copy MYCN primary neuroblastomas and neuroblastoma cell lines. Neoplasia 1: 80–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti JM, Valentine M, Xiang J, Jones B, Amann J, Grenet J et al. (1994). Alterations in the PITSLRE protein kinase gene complex on chromosome 1p36 in childhood neuroblastoma. Nat Genet 7: 370–375.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wong WH . (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Guo C, Blake D, White PS, Hogarty MD, Thompson PM et al. (2001). Comprehensive analysis of chromosome 1p deletions in neuroblastoma. Med Pediatr Oncol 36: 32–36.

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Jensen J, Sulman EP, Beltinger CP, Allen C, Biegel JA et al. (1997). Human Kruppel-related 3 (HKR3): a candidate for the 1p36 neuroblastoma tumour suppressor gene? Eur J Cancer 33: 1991–1996.

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Weiss MJ, Guo C, Gerbing RB, Stram DO, White PS et al. (2000). Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a Children's Cancer Group study. J Clin Oncol 18: 1888–1899.

    Article  CAS  PubMed  Google Scholar 

  • Mathysen D, Van Roy N, Van Hul W, Laureys G, Ambros P, Speleman F et al. (2004). Molecular analysis of the putative tumour-suppressor gene EXTL1 in neuroblastoma patients and cell lines. Eur J Cancer 40: 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Morosetti R, Spira S, Lee S, Ben-Yehuda D, Schiller G et al. (1998). Chromosome band 1p36 contains a putative tumor suppressor gene important in the evolution of chronic myelocytic leukemia. Blood 92: 3405–3409.

    CAS  PubMed  Google Scholar 

  • Mosse YP, Greshock J, Margolin A, Naylor T, Cole K, Khazi D et al. (2005). High-resolution detection and mapping of genomic DNA alterations in neuroblastoma. Genes Chromosomes Cancer 43: 390–403.

    Article  CAS  PubMed  Google Scholar 

  • Nara K, Kusafuka T, Yoneda A, Oue T, Sangkhathat S, Fukuzawa M . (2007). Silencing of MYCN by RNA interference induces growth inhibition, apoptotic activity and cell differentiation in a neuroblastoma cell line with MYCN amplification. Int J Oncol 30: 1189–1196.

    CAS  PubMed  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV . (1999). MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Hosoda M, Miyazaki K, Hayashi S, Watanabe K, Nakagawa T et al. (2005). Functional implication of p73 protein stability in neuronal cell survival and death. Cancer Lett 228: 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Poetsch M, Woenckhaus C, Dittberner T, Pambor M, Lorenz G, Herrmann FH . (1998). An increased frequency of numerical chromosomal abnormalities and 1p36 deletions in isolated cells from paraffin sections of malignant melanomas by means of interphase cytogenetics. Cancer Genet Cytogenet 104: 146–152.

    Article  CAS  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    Article  CAS  PubMed  Google Scholar 

  • Schwab M, Bishop JM . (1988). Sustained expression of the human protooncogene MYCN rescues rat embryo cells from senescence. Proc Natl Acad Sci USA 85: 9585–9589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A et al. (2005). The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102: 731–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strieder V, Lutz W . (2003). E2F proteins regulate MYCN expression in neuroblastomas. J Biol Chem 278: 2983–2989.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM . (2003). CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22: 1002–1011.

    Article  CAS  PubMed  Google Scholar 

  • Valentijn LJ, Koppen A, van Asperen R, Root HA, Haneveld F, Versteeg R . (2005). Inhibition of a new differentiation pathway in neuroblastoma by copy number defects of N-myc, Cdc42, and nm23 genes. Cancer Res 65: 3136–3145.

    Article  CAS  PubMed  Google Scholar 

  • Vogan K, Bernstein M, Leclerc JM, Brisson L, Brossard J, Brodeur GM et al. (1993). Absence of p53 gene mutations in primary neuroblastomas. Cancer Res 53: 5269–5273.

    CAS  PubMed  Google Scholar 

  • Wei JS, Khan J . (2002). Purification of total RNA from mammalian cells and tissues. In: Bowtell D, Sambrook J (eds). DNA Microarrays: A Molecular Cloning Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp 110–119.

    Google Scholar 

  • Wei JS, Whiteford CC, Cenacchi N, Son CG, Khan J . (2005). BBC3 mediates fenretinide-induced cell death in neuroblastoma. Oncogene 24: 7976–7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM . (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16: 2985–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch C, Chen Y, Stallings RL . (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26: 5017–5022.

    Article  CAS  PubMed  Google Scholar 

  • White PS, Maris JM, Beltinger C, Sulman E, Marshall HN, Fujimori M et al. (1995). A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2–36.3. Proc Natl Acad Sci USA 92: 5520–5524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M et al. (2005). Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24: 2684–2694.

    Article  CAS  PubMed  Google Scholar 

  • Woo CW, Tan F, Cassano H, Lee J, Lee KC, Thiele CJ . (2007). Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma. Pediatr Blood Cancer 50: 208–212.

    Article  Google Scholar 

  • Zimmerman KA, Yancopoulos GD, Collum RG, Smith RK, Kohl NE, Denis KA et al. (1986). Differential expression of myc family genes during murine development. Nature 319: 780–783.

    Article  CAS  PubMed  Google Scholar 

  • Zindy F, Knoepfler PS, Xie S, Sherr CJ, Eisenman RN, Roussel MF . (2006). N-Myc and the cyclin-dependent kinase inhibitors p18Ink4c and p27Kip1 coordinately regulate cerebellar development. Proc Natl Acad Sci USA 103: 11579–11583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Joon-Yong Chung and Xinyu Wen, MS for their excellent technical support. We also thank Dr John Maris, Dr Wendy London (Children's Oncology Group, Philadelphia, PA, USA) and Dr Steven Qualman (Cooperative Human Tissue Network, Columbus, OH, USA) for the NB tumor samples, and for invaluable discussion of this study with Dr John Maris and his group. This study is supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Khan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Song, Y., Durinck, S. et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 27, 5204–5213 (2008). https://doi.org/10.1038/onc.2008.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.154

Keywords

This article is cited by

Search

Quick links