Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase

Abstract

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides into deoxyribonucleotides, which constitute the precursor pools used for DNA synthesis and repair. Imbalances in these pools increase mutational rates and are detrimental to the cell. Balanced precursor pools are maintained primarily through the regulation of the RNR substrate specificity. Here, the molecular mechanism of the allosteric substrate specificity regulation is revealed through the structures of a dimeric coenzyme B12–dependent RNR from Thermotoga maritima, both in complexes with four effector-substrate nucleotide pairs and in three complexes with only effector. The mechanism is based on the flexibility of loop 2, a key structural element, which forms a bridge between the specificity effector and substrate nucleotides. Substrate specificity is achieved as different effectors and their cognate substrates stabilize specific discrete loop 2 conformations. The mechanism of substrate specificity regulation is probably general for most class I and class II RNRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the T. maritima (tmNrdJ) dimeric ribonucleotide reductase.
Figure 2: The active site structure of the different substrates in all four cognate substrate–effector complexes.
Figure 3: Effector interactions.
Figure 4: The structural flexibility of loop 2.
Figure 5: Comparison of the regions involved in allosteric specificity regulation in class III and class I-II RNRs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jordan, A. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).

    Article  CAS  Google Scholar 

  2. Fontecave, M., Mulliez, E. & Logan, D.T. Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog. Nucleic Acid Res. Mol. Biol. 72, 95–127 (2002).

    Article  CAS  Google Scholar 

  3. Stubbe, J., Ator, M. & Krenitsky, T. Mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3′-C–H bond cleavage. J. Biol. Chem. 258, 1625–1631 (1983).

    CAS  PubMed  Google Scholar 

  4. Stubbe, J. Ribonucleotide reductases. Adv. Enzymol. Relat. Areas Mol. Biol. 63, 349–419 (1990).

    CAS  PubMed  Google Scholar 

  5. Reichard, P. Ribonucleotide reductases: the evolution of allosteric regulation. Arch. Biochem. Biophys. 397, 149–155 (2002).

    Article  CAS  Google Scholar 

  6. Kunz, B.A. et al. International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat. Res. 318, 1–64 (1994).

    Article  CAS  Google Scholar 

  7. Brown, N.C. & Reichard, P. Role of effector binding in allosteric control of ribonucleoside diphosphate reductase. J. Mol. Biol. 46, 39–55 (1969).

    Article  CAS  Google Scholar 

  8. Eliasson, R., Pontis, E., Jordan, A. & Reichard, P. Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction. J. Biol. Chem. 274, 7182–7189 (1999).

    Article  CAS  Google Scholar 

  9. Andersson, J., Westman, M., Hofer, A. & Sjoberg, B.-M. Allosteric regulation of the class III anaerobic ribonucleotide reductase from bacteriophage T4. J. Biol. Chem. 275, 19443–19448 (2000).

    Article  CAS  Google Scholar 

  10. Larsson, K.M., Andersson, J., Sjoberg, B.M., Nordlund, P. & Logan, D.T. Structural basis for allosteric substrate specificity regulation in anaerobic ribonucleotide reductases. Structure 9, 739–750 (2001).

    Article  CAS  Google Scholar 

  11. Beck, W.S. Regulation of cobamide-dependent ribonucleotide reductase by allosteric effectors and divalent cations. J. Biol. Chem. 242, 3148–3158 (1967).

    CAS  PubMed  Google Scholar 

  12. Panagou, D., Orr, M.D., Dunstone, J.R. & Blakley, R.L. A monomeric, allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase from Lactobacillus leichmannii. Biochemistry 11, 2378–2388 (1972).

    Article  CAS  Google Scholar 

  13. Chen, A.K., Bhan, A., Hopper, S., Abrams, R. & Franzen, J.S. Substrate and effector binding to ribonucleoside triphosphate reductase of Lactobacillus leichmannii. Biochemistry 13, 654–661 (1974).

    Article  CAS  Google Scholar 

  14. Jordan, A. et al. B12-dependent ribonucleotide reductases from deeply rooted eubacteria are structurally related to the aerobic enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 13487–13492 (1997).

    Article  CAS  Google Scholar 

  15. Eriksson, M. et al. Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding. Structure 5, 1077–1092 (1997).

    Article  CAS  Google Scholar 

  16. Uppsten, M. et al. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors. J. Mol. Biol. 330, 87–97 (2003).

    Article  CAS  Google Scholar 

  17. Logan, D.T., Andersson, J., Sjöberg, B.M. & Nordlund, P. A glycyl radical site in the crystal structure of a class III ribonucleotide reductase. Science 283, 1499–1504 (1999).

    Article  CAS  Google Scholar 

  18. Sintchak, M.D., Arjara, G., Kellogg, B.A., Stubbe, J. & Drennan, C.L. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nat. Struct. Biol. 9, 293–300 (2002).

    Article  CAS  Google Scholar 

  19. Uhlin, U. & Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 370, 533–539 (1994).

    Article  CAS  Google Scholar 

  20. Becker, A. et al. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat. Struct. Biol. 6, 969–975 (1999).

    Article  CAS  Google Scholar 

  21. Eklund, H. & Fontecave, M. Glycyl radical enzymes: a conservative structural basis for radicals. Structure Fold Des. 7, R257–R262 (1999).

    Article  CAS  Google Scholar 

  22. Himo, F. & Siegbahn, P.E. Quantum chemical studies of radical-containing enzymes. Chem. Rev. 103, 2421–2456 (2003).

    Article  CAS  Google Scholar 

  23. Chimploy, K. & Mathews, C.K. Mouse ribonucleotide reductase control: influence of substrate binding upon interactions with allosteric effectors. J. Biol. Chem. 276, 7093–7100 (2001).

    Article  CAS  Google Scholar 

  24. Eriksson, S. Direct photoaffinity labeling of ribonucleotide reductase from Escherichia coli. Evidence for enhanced binding of the allosteric effector dTTP by the presence of substrates. J. Biol. Chem. 258, 5674–5678 (1983).

    CAS  PubMed  Google Scholar 

  25. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  28. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003).

    Article  Google Scholar 

  29. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  30. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  31. Kleywegt, G.J. & Jones, A. Databases in protein crystallography. Acta Crystallogr. D 54, 1119–1131 (1998).

    Article  CAS  Google Scholar 

  32. Murshudov, G.N., Vagin, A.A. & Dodson, E.E. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 54, 240–255 (1997).

    Google Scholar 

  33. van Aalten, D.M. et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10, 255–262 (1996).

    Article  CAS  Google Scholar 

  34. Perrakis, A., Sixma, T.K., Wilson, K.S. & Lamzin, V.S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997)

    Article  CAS  Google Scholar 

  35. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  36. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–4, 112-113 (1997).

    Article  CAS  Google Scholar 

  37. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank staff at beamline I711 of MAX-lab (Y. Cerenius) and at the European Molecular Biology Laboratory Hamburg outstation (C. Enroth) for technical help with data collection. This work was supported by grants from the Swedish Research Council (to D.L. and P.N.) and Karolinska Institutet (to P.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Derek T Logan or Pär Nordlund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, KM., Jordan, A., Eliasson, R. et al. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase. Nat Struct Mol Biol 11, 1142–1149 (2004). https://doi.org/10.1038/nsmb838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing