Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes

Abstract

We investigated co-transcriptional recruitment of pre-mRNA processing factors to human genes. Capping factors associate with paused RNA polymerase II (pol II) at the 5′ ends of quiescent genes. They also track throughout actively transcribed genes and accumulate with paused polymerase in the 3′ flanking region. The 3′ processing factors cleavage stimulation factor and cleavage polyadenylation specificity factor are maximally recruited 0.5–1.5 kilobases downstream of poly(A) sites where they coincide with capping factors, Spt5, and Ser2-hyperphosphorylated, paused pol II. 3′ end processing factors also localize at transcription start sites, and this early recruitment is enhanced after polymerase arrest with the elongation factor DRB. These results suggest that promoters may help specify recruitment of 3′ end processing factors. We propose a dual-pausing model wherein elongation arrests near the transcription start site and in the 3′ flank to allow co-transcriptional processing by factors recruited to the pol II ternary complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capping enzymes localize with paused pol II at 5′ and 3′ ends and throughout the p21 gene.
Figure 2: Pol II pausing and histone localization at 5′ and 3′ ends of p21.
Figure 3: Capping enzymes track with pol II on the MYC and GAPDH genes.
Figure 4: Localizaton of capping factors on various human genes.
Figure 5: Localization of 3′ end processing factors at 5′ and 3′ ends of p21, MYC and GAPDH.
Figure 6: Co-transcriptional recruitment of 3′ end processing factors to a histone gene.
Figure 7: Dual-pausing model for co-transcriptional 5′ and 3′ end maturation of polyadenylated mRNAs.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bauren, G., Belikov, S. & Wieslander, L. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev. 12, 2759–2769 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hirose, Y. & Manley, J.L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  5. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Greenleaf, A.L. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci. 18, 117–119 (1993).

    CAS  Google Scholar 

  7. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Licatalosi, D.D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Swinburne, I.A., Meyer, C.A., Liu, X.S., Silver, P.A. & Brodsky, A.S. Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription. Genome Res. 16, 912–921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkataraman, K., Brown, K.M. & Gilmartin, G.M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev. 19, 1315–1327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Z. & Gilmour, D.S. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21, 65–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Furuichi, Y. & Shatkin, A.J. Viral and cellular mRNA capping: past and prospects. Adv. Virus Res. 55, 135–184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coppola, J.A., Field, A.S. & Luse, D.S. Promoter-proximal pausing by RNA polymerase II in vitro: transcripts shorter than 20 nucleotides are not capped. Proc. Natl. Acad. Sci. USA 80, 1251–1255 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasmussen, E.B. & Lis, J.T. In vivo transcriptional pausing and cap formation on 3 Drosophila heat-shock genes. Proc. Natl. Acad. Sci. USA 90, 7923–7927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moteki, S. & Price, D. Functional coupling of capping and transcription of mRNA. Mol. Cell 10, 599–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Chiu, Y.L. et al. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell 10, 585–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Shuman, S. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94, 12758–12760 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pei, Y. & Shuman, S. Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5. J. Biol. Chem. 277, 19639–19648 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, C. & Sharp, P.A. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and γ-actin genes. Mol. Cell. Biol. 23, 1961–1967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen, Y. & Shatkin, A.J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 13, 1774–1779 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mandal, S.S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl. Acad. Sci. USA 101, 7572–7577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominski, Z., Yang, X.C. & Marzluff, W.F. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 123, 37–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kolev, N.G. & Steitz, J.A. Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev. 19, 2583–2592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Nag, A., Narsinh, K. & Martinson, H.G. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat. Struct. Mol. Biol. 14, 662–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Dantonel, J.C., Murthy, K.G., Manley, J.L. & Tora, L. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389, 399–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Nag, A., Narsinh, K., Kazerouninia, A. & Martinson, H.G. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12, 1534–1544 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gromak, N., West, S. & Proudfoot, N.J. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol. Cell. Biol. 26, 3986–3896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neuman de Vegvar, H., Lund, E. & Dahlberg, J.E. 3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 47, 259–266 (1986).

    Article  CAS  Google Scholar 

  35. Hernandez, N. & Weiner, A.M. Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 47, 249–258 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Workman, J.L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Ni, Z., Schwartz, B.E., Werner, J., Suarez, J.R. & Lis, J.T. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell 13, 55–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bird, G., Zorio, D.A. & Bentley, D.L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation. Mol. Cell. Biol. 24, 8963–8969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vos, J.C., Sasker, M. & Stunnenberg, H.G. Vaccinia virus capping enzyme is a transcription initiation factor. EMBO J. 10, 2553–2558 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hagler, J., Luo, Y. & Shuman, S. Factor-dependent transcription termination by vaccinia RNA polymerase. Kinetic coupling and requirement for ATP hydrolysis. J. Biol. Chem. 269, 10050–10060 (1994).

    CAS  PubMed  Google Scholar 

  42. Adamson, T.E., Shutt, D.C. & Price, D.H. Functional coupling of cleavage and polyadenylation with transcription of mRNA. J. Biol. Chem. 280, 32262–32271 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Schroeder, S., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lacadie, S.A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol. Cell 19, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Yonaha, M. & Proudfoot, N.J. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3, 593–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M. & Manley, J.L. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes Dev. 21, 1779–1789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14, 796–806 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosonina, E., Kaneko, S. & Manley, J.L. Terminating the transcript: breaking up is hard to do. Genes Dev. 20, 1050–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Osheim, Y.N., Proudfoot, N.J. & Beyer, A.L. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. Mol. Cell 3, 379–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Rigo, F., Kazerouninia, A., Nag, A. & Martinson, H.G. The RNA tether from the poly(A) signal to the polymerase mediates coupling of transcription to cleavage and polyadenylation. Mol. Cell 20, 733–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Bird, G., Fong, N., Gatlin, J.C., Farabaugh, S. & Bentley, D.L. Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol. Cell 20, 747–758 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants GM063873 and GM58613 to D.L.B. and CA117907 to J.E. K.G.-C. was supported by NIH fellowship 5F31 GM072099 and S.K. by F32 GM076951. We thank I. Mattaj (EMBL, Heidelberg) and T. Blumenthal (University of Colorado, Boulder) for antibodies. We also thank T. Blumenthal, J. Jaehning, R. Davis, T. Evans, N. Gomes, G. Bjerke, G. Bilousova, B. Erickson and members of the Bentley and Espinosa labs for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L Bentley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3 and Supplementary Methods (PDF 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover-Cutter, K., Kim, S., Espinosa, J. et al. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15, 71–78 (2008). https://doi.org/10.1038/nsmb1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing