Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RPA-like proteins mediate yeast telomere function

Abstract

Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA–binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stn1 is an OB fold–containing protein.
Figure 2: The yeast Stn1 protein binds with enhanced specificity to telomeric substrates.
Figure 3: Ten1 binds telomeric DNA sequence-specifically.
Figure 4: Rpa2 and Rpa3 interact weakly with telomeric substrates.
Figure 5: Stn1 and Ten1 form a subcomplex analogous to the Rpa2–Rpa3 subcomplex.

References

  1. Shay, J.W. & Wright, W.E. in Telomeres 2nd edn. (eds. de Lange, T., Lundblad, V. & Blackburn, E.) 81–108 (Cold Spring Harbor Laboratory, New York, 2005).

    Google Scholar 

  2. Stewart, S.A. & Weinberg, R.A. Telomeres: cancer to human aging. Annu. Rev. Cell Dev. Biol. 22, 531–557 (2006).

    Article  CAS  Google Scholar 

  3. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article  CAS  Google Scholar 

  4. Lundblad, V. & Szostak, J.W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  Google Scholar 

  5. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  Google Scholar 

  6. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  Google Scholar 

  7. Hug, N. & Lingner, J. Telomere length homeostasis. Chromosoma 115, 413–425 (2006).

    Article  CAS  Google Scholar 

  8. Blackburn, E.H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  Google Scholar 

  9. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  10. Nugent, C.I., Hughes, T.R., Lue, N.F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  Google Scholar 

  11. Taggart, A.K., Teng, S.C. & Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002).

    Article  CAS  Google Scholar 

  12. Weinert, T.A. & Hartwell, L.H. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134, 63–80 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  Google Scholar 

  14. Evans, S.K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999).

    Article  CAS  Google Scholar 

  15. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  Google Scholar 

  16. Bianchi, A., Negrini, S. & Shore, D. Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1. Mol. Cell 16, 139–146 (2004).

    Article  CAS  Google Scholar 

  17. Grandin, N., Reed, S.I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  Google Scholar 

  18. Grandin, N., Damon, C. & Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183 (2001).

    Article  CAS  Google Scholar 

  19. Vodenicharov, M.D. & Wellinger, R.J. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (CDC28/Clb) cell cycle kinase. Mol. Cell 24, 127–137 (2006).

    Article  CAS  Google Scholar 

  20. Chandra, A., Hughes, T.R., Nugent, C.I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 (2001).

    Article  CAS  Google Scholar 

  21. Wold, M.S. Replication Protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997).

    Article  CAS  Google Scholar 

  22. Iftode, C., Daniely, Y. & Borowiec, J.A. Replication Protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34, 141–180 (1999).

    Article  CAS  Google Scholar 

  23. Bochkarev, A. & Bochkareva, E. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14, 36–42 (2004).

    Article  CAS  Google Scholar 

  24. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  Google Scholar 

  25. Bochkarev, A., Bochkareva, E., Frappier, L. & Edwards, A.M. The crystal structure of the complex of Replication Protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18, 4498–4504 (1999).

    Article  CAS  Google Scholar 

  26. Ginalski, K., Elofsson, A., Fischer, D. & Rychlewski, L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  27. Arcus, V. OB-fold domains: a snapshot of the evolution of sequence, structure and function. Curr. Opin. Struct. Biol. 12, 794–801 (2002).

    Article  CAS  Google Scholar 

  28. Theobald, D.L., Mitton-Fry, R.M. & Wuttke, D.S. Nucleic acid recognition by OB-fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003).

    Article  CAS  Google Scholar 

  29. Theobald, D.L. & Wuttke, D.S. Divergent evolution within protein superfolds inferred from profile-based phylogenetics. J. Mol. Biol. 354, 722–737 (2005).

    Article  CAS  Google Scholar 

  30. Santocanale, C., Neecke, H., Longhese, M.P., Lucchini, G. & Plevani, P. Mutations in the gene encoding the 34 kDa subunit of yeast Replication Protein A cause defective S phase progression. J. Mol. Biol. 254, 595–607 (1995).

    Article  CAS  Google Scholar 

  31. Philipova, D. et al. A hierarchy of SSB protomers in Replication Protein A. Genes Dev. 10, 2222–2233 (1996).

    Article  CAS  Google Scholar 

  32. Maniar, H.S., Wilson, R. & Brill, S.J. Roles of replication protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 145, 891–902 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitton-Fry, R.M., Anderson, E.M., Hughes, T.R., Lundblad, V. & Wuttke, D.S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145–147 (2002).

    Article  CAS  Google Scholar 

  34. Sibenaller, Z.A., Sorensen, B.R. & Wold, M.S. The 32- and 14-kilodalton subunits of Replication Protein A are responsible for species-specific interactions with single-stranded DNA. Biochemistry 37, 12496–12506 (1998).

    Article  CAS  Google Scholar 

  35. Bochkareva, E., Frappier, L., Edwards, A.M. & Bochkarev, A. The RPA32 subunit of human Replication Protein A contains a single-stranded DNA-binding domain. J. Biol. Chem. 273, 3932–3936 (1998).

    Article  CAS  Google Scholar 

  36. Lin, Y.L., Chen, C., Keshav, K.F., Winchester, E. & Dutta, A. Dissection of functional domains of the human DNA replication protein complex Replication Protein A. J. Biol. Chem. 271, 17190–17198 (1996).

    Article  CAS  Google Scholar 

  37. Venclovas, C. & Thelen, M.P. Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28, 2481–2493 (2000).

    Article  CAS  Google Scholar 

  38. Green, C.M., Erdjument-Bromage, H., Tempst, P. & Lowndes, N.F. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10, 39–42 (2000).

    Article  CAS  Google Scholar 

  39. Parrilla-Castellar, E.R., Arlander, S.J. & Karnitz, L. Dial 9–1-1 for DNA damage: the Rad9-Hus1-Rad1 (9–1-1) clamp complex. DNA Repair (Amst.) 3, 1009–1014 (2004).

    Article  CAS  Google Scholar 

  40. Aroya, S.B. & Kupiec, M. The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst.) 4, 409–417 (2005).

    Article  Google Scholar 

  41. Wold, M.S., Weinberg, D.H., Virshup, D.M., Li, J.J. & Kelly, T.J. Identification of cellular proteins required for simian virus 40 DNA replication. J. Biol. Chem. 264, 2801–2809 (1989).

    CAS  PubMed  Google Scholar 

  42. Bochkareva, E., Belegu, V., Korolev, S. & Bochkarev, A. Structure of the major single-stranded DNA-binding domain of Replication Protein A suggests a dynamic mechanism for DNA binding. EMBO J. 20, 612–618 (2001).

    Article  CAS  Google Scholar 

  43. Theobald, D.L. & Wuttke, D.S. Prediction of multiple tandem OB-fold domains in telomere end-binding proteins Pot1 and Cdc13. Structure 12, 1877–1879 (2004).

    Article  CAS  Google Scholar 

  44. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  Google Scholar 

  45. Lisby, M., Barlow, J.H., Burgess, R.C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004).

    Article  CAS  Google Scholar 

  46. Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72, 51–60 (1993).

    Article  CAS  Google Scholar 

  47. Wellinger, R.J., Ethier, K., Labrecque, P. & Zakian, V.A. Evidence for a new step in telomere maintenance. Cell 85, 423–433 (1996).

    Article  CAS  Google Scholar 

  48. Takata, H., Kanoh, Y., Gunge, N., Shirahige, K. & Matsuura, A. Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol. Cell 14, 515–522 (2004).

    Article  CAS  Google Scholar 

  49. Smith, J., Zou, H. & Rothstein, R. Characterization of genetic interactions with RFA1: the role of RPA in DNA replication and telomere maintenance. Biochimie 82, 71–78 (2000).

    Article  CAS  Google Scholar 

  50. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet. 36, 46–54 (2004).

    Article  CAS  Google Scholar 

  51. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  52. Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    Article  CAS  Google Scholar 

  53. Poirot, O., O'Toole, E. & Notredame, C. Tcoffee@igs: A web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res. 31, 3503–3506 (2003).

    Article  CAS  Google Scholar 

  54. Poirot, O., Suhre, K., Abergel, C., O'Toole, E. & Notredame, C. 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Res. 32, W37–W40 (2004).

    Article  CAS  Google Scholar 

  55. Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Brill (Rutgers University), Elledge (Harvard Medical School) and Wold (University of Iowa) laboratories for gifts of strains and plasmids, D. Wuttke and M. Wold for scientific conversations and advice, and E. Ford for technical assistance. This research was supported by Department of Defense postdoctoral fellowship DAMD 17-02-1-0276 (to R.B.C.), by grant GM55867 from the US National Institutes of Health and by the Lebensfeld Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Lundblad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Relative binding of Stn1, Ten1 and Stn164-199. (PDF 423 kb)

Supplementary Fig. 2

Yeast two-hybrid analysis with Cdc13, Stn1 and Ten1. (PDF 211 kb)

Supplementary Fig. 3

Comparison of the domain structure of subunits of the RPA and Cdc13-Stn1-Ten1 complexes. (PDF 384 kb)

Supplementary Table 1

List of plasmids used in this work. (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, H., Cervantes, R., Mandell, E. et al. RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol 14, 208–214 (2007). https://doi.org/10.1038/nsmb1205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing