Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion

Subjects

Abstract

Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A–H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histone depletion and analysis of mitotic nucleosome functions.
Figure 2: The RCC1- and Aurora B–dependent spindle-assembly pathways both require nucleosomes.
Figure 3: Proteomic profiling of nucleosome beads and DNA beads.
Figure 4: NPC assembly, but not membrane recruitment, requires nucleosomes.
Figure 5: Nucleosomes directly recruit ELYS.
Figure 6: The C-terminal domain of ELYS interacts directly with histone H2A–H2B.
Figure 7: Targeting RCC1 and ELYS to DNA is sufficient for NPC assembly in the absence of nucleosomes.
Figure 8: Roles of nucleosomes in spindle assembly and nuclear-envelope assembly.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  Google Scholar 

  2. Bannister, A.J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  Google Scholar 

  3. Wyrick, J.J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999).

    Article  CAS  Google Scholar 

  4. Ederveen, T.H., Mandemaker, I.K. & Logie, C. The human histone H3 complement anno 2011. Biochim. Biophys. Acta 1809, 577–586 (2011).

    Article  CAS  Google Scholar 

  5. Maze, I., Noh, K.M., Soshnev, A.A. & Allis, C.D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).

    Article  CAS  Google Scholar 

  6. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  7. Forbes, D.J., Kirschner, M.W. & Newport, J.W. Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell 34, 13–23 (1983).

    Article  CAS  Google Scholar 

  8. Carroll, D. & Lehman, C.W. DNA recombination and repair in oocytes, eggs, and extracts. Methods Cell Biol. 36, 467–486 (1991).

    Article  CAS  Google Scholar 

  9. Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686 (1982).

    Article  CAS  Google Scholar 

  10. Nicklay, J.J. et al. Analysis of histones in Xenopus laevis. II. mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. J. Biol. Chem. 284, 1075–1085 (2009).

    Article  CAS  Google Scholar 

  11. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  12. Clarke, P.R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 9, 464–477 (2008).

    Article  CAS  Google Scholar 

  13. Sampath, S.C. et al. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118, 187–202 (2004).

    Article  CAS  Google Scholar 

  14. Hao, Y. & Macara, I.G. Regulation of chromatin binding by a conformational switch in the tail of the Ran exchange factor RCC1. J. Cell Biol. 182, 827–836 (2008).

    Article  CAS  Google Scholar 

  15. Seino, H., Hisamoto, N., Uzawa, S., Sekiguchi, T. & Nishimoto, T. DNA-binding domain of RCC1 protein is not essential for coupling mitosis with DNA replication. J. Cell Sci. 102, 393–400 (1992).

    CAS  PubMed  Google Scholar 

  16. Nemergut, M.E., Mizzen, C.A., Stukenberg, T., Allis, C.D. & Macara, I.G. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543 (2001).

    Article  CAS  Google Scholar 

  17. Makde, R.D., England, J.R., Yennawar, H.P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010).

    Article  CAS  Google Scholar 

  18. Kelly, A.E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239 (2010).

    Article  CAS  Google Scholar 

  19. Wang, F. et al. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330, 231–235 (2010).

    Article  CAS  Google Scholar 

  20. Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243 (2010).

    Article  CAS  Google Scholar 

  21. Funabiki, H. & Murray, A.W. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  Google Scholar 

  22. Kelly, A.E. et al. Chromosomal enrichment and activation of the aurora B pathway are coupled to spatially regulate spindle assembly. Dev. Cell 12, 31–43 (2007).

    Article  CAS  Google Scholar 

  23. Swedlow, J.R. & Hirano, T. The making of the mitotic chromosome: modern insights into classical questions. Mol. Cell 11, 557–569 (2003).

    Article  CAS  Google Scholar 

  24. Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477–483 (2011).

    Article  CAS  Google Scholar 

  25. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).

    Article  CAS  Google Scholar 

  26. Postow, L. et al. Ku80 removal from DNA through double strand break-induced ubiquitylation. J. Cell Biol. 182, 467–479 (2008).

    Article  CAS  Google Scholar 

  27. Li, F. et al. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153, 590–600 (2013).

    Article  CAS  Google Scholar 

  28. Ura, K., Nightingale, K. & Wolffe, A.P. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. EMBO J. 15, 4959–4969 (1996).

    Article  CAS  Google Scholar 

  29. Oohara, I. & Wada, A. Spectroscopic studies on histone-DNA interactions. I. the interaction of histone (H2A, H2B) dimer with DNA: DNA sequence dependence. J. Mol. Biol. 196, 389–397 (1987).

    Article  CAS  Google Scholar 

  30. Shintomi, K. et al. Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs. Proc. Natl. Acad. Sci. USA 102, 8210–8215 (2005).

    Article  CAS  Google Scholar 

  31. Saeki, H. et al. Linker histone variants control chromatin dynamics during early embryogenesis. Proc. Natl. Acad. Sci. USA 102, 5697–5702 (2005).

    Article  CAS  Google Scholar 

  32. Andrews, A.J., Chen, X., Zevin, A., Stargell, L.A. & Luger, K. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol. Cell 37, 834–842 (2010).

    Article  CAS  Google Scholar 

  33. Lane, A.B., Gimenez-Abian, J.F. & Clarke, D.J. A novel chromatin tether domain controls topoisomerase IIα dynamics and mitotic chromosome formation. J. Cell Biol. 203, 471–486 (2013).

    Article  CAS  Google Scholar 

  34. Anderson, D.J. & Hetzer, M.W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 9, 1160–1166 (2007).

    Article  CAS  Google Scholar 

  35. Ulbert, S., Platani, M., Boue, S. & Mattaj, I.W. Direct membrane protein-DNA interactions required early in nuclear envelope assembly. J. Cell Biol. 173, 469–476 (2006).

    Article  CAS  Google Scholar 

  36. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    Article  CAS  Google Scholar 

  37. Gorjánácz, M. et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 26, 132–143 (2007).

    Article  Google Scholar 

  38. Zheng, R. et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc. Natl. Acad. Sci. USA 97, 8997–9002 (2000).

    Article  CAS  Google Scholar 

  39. Montes de Oca, R., Lee, K.K. & Wilson, K.L. Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J. Biol. Chem. 280, 42252–42262 (2005).

    Article  CAS  Google Scholar 

  40. Strambio-De-Castillia, C., Niepel, M. & Rout, M.P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11, 490–501 (2010).

    Article  CAS  Google Scholar 

  41. Loewinger, L. & McKeon, F. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J. 7, 2301–2309 (1988).

    Article  CAS  Google Scholar 

  42. Mical, T.I. & Monteiro, M.J. The role of sequences unique to nuclear intermediate filaments in the targeting and assembly of human lamin B: evidence for lack of interaction of lamin B with its putative receptor. J. Cell Sci. 111, 3471–3485 (1998).

    CAS  PubMed  Google Scholar 

  43. Rasala, B.A., Ramos, C., Harel, A. & Forbes, D.J. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19, 3982–3996 (2008).

    Article  CAS  Google Scholar 

  44. Gillespie, P.J., Khoudoli, G.A., Stewart, G., Swedlow, J.R. & Blow, J.J. ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr. Biol. 17, 1657–1662 (2007).

    Article  CAS  Google Scholar 

  45. Galy, V., Askjaer, P., Franz, C., Lopez-Iglesias, C. & Mattaj, I.W. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol. 16, 1748–1756 (2006).

    Article  CAS  Google Scholar 

  46. Rasala, B.A., Orjalo, A.V., Shen, Z., Briggs, S. & Forbes, D.J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl. Acad. Sci. USA 103, 17801–17806 (2006).

    Article  CAS  Google Scholar 

  47. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    Article  CAS  Google Scholar 

  48. Bilokapic, S. & Schwartz, T.U. Structural and functional studies of the 252 kDa nucleoporin ELYS reveal distinct roles for its three tethered domains. Structure 21, 572–580 (2013).

    Article  CAS  Google Scholar 

  49. Walther, T.C. et al. RanGTP mediates nuclear pore complex assembly. Nature 424, 689–694 (2003).

    Article  CAS  Google Scholar 

  50. D'Angelo, M.A., Anderson, D.J., Richard, E. & Hetzer, M.W. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443(2006).

    Article  CAS  Google Scholar 

  51. Zhang, C. & Clarke, P.R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000).

    Article  CAS  Google Scholar 

  52. Rotem, A. et al. Importin β regulates the seeding of chromatin with initiation sites for nuclear pore assembly. Mol. Biol. Cell 20, 4031–4042 (2009).

    Article  CAS  Google Scholar 

  53. Halpin, D., Kalab, P., Wang, J., Weis, K. & Heald, R. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts. PLoS Biol. 9, e1001225 (2011).

    Article  CAS  Google Scholar 

  54. Tseng, B.S., Tan, L., Kapoor, T.M. & Funabiki, H. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly. Dev. Cell 18, 903–912 (2010).

    Article  CAS  Google Scholar 

  55. Maresca, T.J. et al. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr. Biol. 19, 1210–1215 (2009).

    Article  CAS  Google Scholar 

  56. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  Google Scholar 

  57. Ghenoiu, C., Wheelock, M.S. & Funabiki, H. Autoinhibition and polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol. Cell 52, 734–745 (2013).

    Article  CAS  Google Scholar 

  58. Doucet, C.M., Talamas, J.A. & Hetzer, M.W. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141, 1030–1041 (2010).

    Article  CAS  Google Scholar 

  59. Chan, K.L., North, P.S. & Hickson, I.D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  Google Scholar 

  60. Flavell, R.R. & Muir, T.W. Expressed protein ligation (EPL) in the study of signal transduction, ion conduction, and chromatin biology. Acc. Chem. Res. 42, 107–116 (2009).

    Article  CAS  Google Scholar 

  61. Murray, A.W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  62. Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N. & Nozaki, N. The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct. Funct. 33, 61–73 (2008).

    Article  CAS  Google Scholar 

  63. Nozawa, R.S. et al. Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12, 719–727 (2010).

    Article  CAS  Google Scholar 

  64. Xue, J.Z., Woo, E.M., Postow, L., Chait, B.T. & Funabiki, H. Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev. Cell 27, 47–59 (2013).

    Article  CAS  Google Scholar 

  65. Maresca, T.J., Freedman, B.S. & Heald, R. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts. J. Cell Biol. 169, 859–869 (2005).

    Article  CAS  Google Scholar 

  66. Nachury, M.V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    Article  CAS  Google Scholar 

  67. Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell 9, 1091–1100 (2002).

    Article  CAS  Google Scholar 

  68. Walter, J. & Newport, J.W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997).

    Article  CAS  Google Scholar 

  69. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627 (2000).

    Article  CAS  Google Scholar 

  70. Hirano, T. & Mitchison, T.J. Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J. Cell Biol. 120, 601–612 (1993).

    Article  CAS  Google Scholar 

  71. Kimura, K. & Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90, 625–634 (1997).

    Article  CAS  Google Scholar 

  72. Ruthenburg, A.J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  Google Scholar 

  73. Guse, A., Carroll, C.W., Moree, B., Fuller, C.J. & Straight, A.F. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477, 354–358 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.D. Allis (Rockefeller University), G. Almouzni (Institut Curie), Y. Azuma (University of Kansas), R. Heald (University of California, Berkeley), M. Hetzer (Salk Institute), T. Hirano (RIKEN), I. Mattaj (European Molecular Biology Laboratory), T. Muir (Princeton University), N. Nozaki (MAB Institute, Inc.), J. Ravetch (Rockefeller University), D. Shechter (Albert Einstein University), D. Shumaker (Northwestern University), A. Straight (Stanford University) and J. Walter (Harvard Medical School) for reagents; the Rockefeller University Bio-Imaging Resource Center and D. Wynne for help with image analysis; H. Molina and J. Fernandez at the Proteomics Resource Center for MS analysis; T. de Lange, S. Giunta, K. Ura, D. Wynne, and J. Xue for critical reading of the manuscript; and members of the Funabiki laboratory for discussions. This study was supported by Austrian Science Fund grant J-2918 (C.Z.), a Marie-Josée and Henry Kravis fellowship (C.Z.), grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the New Energy and Industrial Technology Development Organization of Japan (H.K.) and US National Institutes of Health grant R01-GM075249 (H.F.).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. designed the study, carried out experiments and analyzed the data. C.J. carried out experiments and analyzed data. H.K. generated antibodies. H.F. designed and supervised the study. C.Z., C.J. and H.F. wrote the manuscript with contributions by H.K.

Corresponding authors

Correspondence to Christian Zierhut or Hironori Funabiki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Description of ΔH3–H4 extracts.

(a) Western blot analysis (top) and quantification (bottom) of H3 in extract compared to recombinant standards. The vertical line indicates irrelevant lanes that were removed in Adobe Photoshop. (b) Western blot analysis of the comparison of various antibodies for H3–H4 depletion. The indicated antibodies were used for H3–H4 depletion and supernatants and bead fractions were analyzed by western blot. H3K4unmod, raised against the unmodified H3 tail. H4N, antibody raised against the N terminus of H4. H3C, antibody raised against the C terminus of H3. m IgG, control mouse IgG1 antibodies. Vertical lines indicate that irrelevant lanes on the membranes were removed in Adobe Photoshop. (c) Agarose gel electrophoresis analysis of plasmids purified from E. coli or from the indicated extracts. The gel was run in the absence of intercalators. (d) Agarose gel analysis of nucleosome formation and spacing. DNA was incubated in the indicated extracts and subjected to micrococcal nuclease (MNase) digestion.

Supplementary Figure 2 Agarose gel analysis of beads recovered from extract and analysis of CPC interaction with mutant H3 N-terminal peptides.

(a) Agarose gel analysis of DNA extracted from nucleosome beads or DNA beads recovered from ΔH3–H4 extract. (b) Western blot analysis of CPC binding to the indicated peptides. H3_scr, scrambled H3 tail. H3_S3ph, Thr3 was changed to phosphorylated serine.

Supplementary Figure 3 Analysis of the reproducibility of the MS dataset.

(a) The ratio of protein quantity co-purified with nucleosome-beads over DNA-beads with ≥3 peptide spectral matches in two independent experiments was determined for each replicate. Proteins in the upper right quadrant were reproducibly enriched on nucleosomes, while proteins in the bottom left quadrant were reproducibly enriched on DNA. Note that proteins exclusively identified on DNA or nucleosomes are not plotted. (b,c) Abundance (LC-MS/MS integration) of nucleosome (b) and DNA (c) associated proteins identified with ≥3 peptide spectral matches in two independent experiments was calculated for each experiment.

Supplementary Figure 4 Characterization of proteins identified in LC-MS/MS.

(a-d) Western blot analysis of proteins co-purified with DNA beads or nucleosome beads incubated in ΔH3–H4 extracts. Each panel represents a separate experiment. (e) Coomassie staining of uncoated beads, naked DNA beads or nucleosome beads incubated with recombinant Topo II and BSA in buffer.

Supplementary Figure 5 Analysis of nuclear envelopes in ΔH3–H4 extract.

(a) Fluorescence microscopy analysis of nucleosome beads or DNA beads recovered from interphase ΔH3–H4 extracts and stained with anti-GFP antibody (green) and DAPI (magenta). Sum intensity projections of deconvolved Z stacks are shown. Scale bar, 3 μm. (b) Fluorescence microscopy analysis and quantification (c) of nucleosome beads or DNA beads recovered from interphase ΔH3–H4 extracts and stained with anti-Nup96 antibody (green) and DAPI (magenta). Single deconvolved z sections are shown. Scale bar, 3 μm. Each data point is the average intensity per bead of an individual cluster of beads (n = 15 for nucleosome beads; n = 14 for DNA beads). Median values and interquartile ranges are indicated. P < 0.0001 (two-tailed Mann-Whitney U test). (d) Western blot analysis of pull downs of nucleosome beads, DNA beads or uncoupled beads recovered from interphase ΔH3–H4 extracts. (e) Fluorescence microscopy analysis of nucleosome beads recovered from interphase or M phase ΔH3–H4 extracts and stained with anti-ELYS antibody (green) and DAPI (magenta). Scale bar, 3 μm.

Supplementary Figure 6 Analysis of nucleosome binding of ELYS and ELYSΔC fragments.

(a) Coomassie stained gel depicting the recombinant ELYS fragments used in this study, depicted in Fig. 5d. (b) Coomassie stained gel of pull downs of nucleosome beads or uncoupled beads incubated with the indicated recombinant ELYS fragments. ELYSC 2A contains two alanine mutations at R2332 and R2334 within the AT-hook. A weakly stained version and a stronger stained version of the same gel are shown. (c) Western blot analysis of pull downs of nucleosome beads or uncoupled beads incubated with the indicated recombinant ELYS fragments. Coomassie staining could not be used because ELYSC3 runs at about the same size as histones. (d) Western blot analysis of pull downs of nucleosome beads or uncoupled beads incubated with the indicated recombinant ELYS fragments. Coomassie staining could not be used because ELYSC2 runs at about the same size as histones.

Supplementary Figure 7 Expression of RCC1-DBD and ELYSΔC2-DBD in extract.

(a) Depiction of the constructs used. ELYSΔC2-DBD is ELYS amino acids 1-2280 fused to the DNA binding domain of Xkid (DBD) followed by an HA tag. RCC1-DBD is the full length Xenopus laevis RCC1 fused to the same Xkid DNA binding domain on its C terminus. (b) Western blot analysis of expression of ELYSΔC2-DBD and RCC1-DBD in extract. The same membranes were stained with anti-HA (mouse) and anti-ELYS or anti-RCC1 (both rabbit). Secondary antibodies containing different fluorophors were used. Arrowheads point ELYSDC2-DBD in the upper overlay image.

Supplementary Figure 8 Complete scans of the gels and western blots shown in the main figures.

Dotted boxes indicate the parts that are shown in the figures. Please note that some membranes were cut into multiple strips prior to antibody detection to enable visualization of multiple antigens.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1248 kb)

Supplementary Data Set 1

Proteomic analysis of nucleosome- and DNA-interacting proteins (XLSX 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zierhut, C., Jenness, C., Kimura, H. et al. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion. Nat Struct Mol Biol 21, 617–625 (2014). https://doi.org/10.1038/nsmb.2845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing