Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Turning catalytically inactive human Argonaute proteins into active slicer enzymes

Abstract

Argonaute proteins interact with small RNAs that guide them to complementary target RNAs, thus leading to inhibition of gene expression. Some but not all Argonaute proteins are endonucleases and can cleave the complementary target RNA. Here, we have mutated inactive human Ago1 and Ago3 and generated catalytic Argonaute proteins. We find that two short sequence elements at the N terminus are important for activity. In addition, PIWI-domain mutations in Ago1 may misarrange the catalytic center. Our work helps in understanding of the structural requirements that make an Argonaute protein an active endonucleolytic enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Passenger-strand cleavage activity.
Figure 2: The N-terminal domain of Ago3 inhibits its cleavage activity.
Figure 3: Two short sequence elements in the N-terminal domain of Ago3 are required for cleavage activity.
Figure 4: Alterations in the PIWI domain and the N terminus restore Ago1 slicing activity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ender, C. & Meister, G. Argonaute proteins at a glance. J. Cell Sci. 123, 1819–1823 (2010).

    Article  CAS  Google Scholar 

  2. Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  Google Scholar 

  3. Jinek, M. & Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).

    Article  CAS  Google Scholar 

  4. Tolia, N.H. & Joshua-Tor, L. Slicer and the argonautes. Nat. Chem. Biol. 3, 36–43 (2007).

    Article  CAS  Google Scholar 

  5. Siomi, M.C., Sato, K., Pezic, D. & Aravin, A.A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    Article  CAS  Google Scholar 

  6. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  Google Scholar 

  7. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  8. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  9. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  Google Scholar 

  10. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  Google Scholar 

  11. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  Google Scholar 

  12. Yang, J.S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168 (2010).

    Article  CAS  Google Scholar 

  13. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  14. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  Google Scholar 

  15. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  Google Scholar 

  16. Leuschner, P.J., Ameres, S.L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006).

    Article  CAS  Google Scholar 

  17. Petri, S. et al. Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 17, 737–749 (2011).

    Article  CAS  Google Scholar 

  18. Gu, S. et al. Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc. Natl. Acad. Sci. USA 108, 9208–9213 (2011).

    Article  CAS  Google Scholar 

  19. Wang, B. et al. Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nat. Struct. Mol. Biol. 16, 1259–1266 (2009).

    Article  CAS  Google Scholar 

  20. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  Google Scholar 

  21. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  Google Scholar 

  22. Hur, J.K., Zinchenko, M.K., Djuranovic, S. & Green, R. Regulation of Argonaute slicer activity by guide RNA 3′ end interactions with the N-terminal lobe. J. Biol. Chem. 288, 7829–7840 (2013).

    Article  CAS  Google Scholar 

  23. Kwak, P.B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19, 145–151 (2012).

    Article  CAS  Google Scholar 

  24. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  25. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    Article  CAS  Google Scholar 

  26. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  Google Scholar 

  27. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Ammon and C. Friederich for technical assistance. Our research is supported by grants from the Deutsche Forschungsgemeinschaft (SFB 960 projects B3 and B4 to G.M. and FOR855 to G.M.), the European Research Council (grant 242792 'sRNAs' to G.M.), the Bavarian Genome Research Network (BayGene to G.M.), the Bavarian Systems-Biology Network (BioSysNet to G.M.) and the European Union (grant 201102 'ONCOMIRs' to G.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.H., A.D. and G.M. designed the experiments. J.H. and A.D. performed the experiments. S.H. and J.P. prepared several Ago mutants and recombinant Ago proteins. R.M. did bioinformatical analyses and structural modeling. G.M. and J.H. wrote the manuscript.

Corresponding author

Correspondence to Gunter Meister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauptmann, J., Dueck, A., Harlander, S. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 20, 814–817 (2013). https://doi.org/10.1038/nsmb.2577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing