Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A structural model for actin-induced nucleotide release in myosin

Abstract

Myosins are molecular motor proteins that harness the chemical energy stored in ATP to produce directed force along actin filaments. Complex communication pathways link the catalytic nucleotide-binding region, the structures responsible for force amplification and the actin-binding domain of myosin. We have crystallized the nucleotide-free motor domain of myosin II in a new conformation in which switch I and switch II, conserved loop structures involved in nucleotide binding, have moved away from the nucleotide-binding pocket. These movements are linked to rearrangements of the actin-binding region, which illuminate a previously unobserved communication pathway between the nucleotide-binding pocket and the actin-binding region, explain the reciprocal relationship between actin and nucleotide affinity and suggest a new mechanism for product release in myosin family motors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three conformations of the myosin II nucleotide-binding pocket.
Figure 2: Global conformational changes in the O/O conformation of myosin II.
Figure 3

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  CAS  Google Scholar 

  2. Fisher, A.J. et al. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34, 8960–8972 (1995).

    Article  CAS  Google Scholar 

  3. Smith, C.A. & Rayment, I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35, 5404–5417 (1996).

    Article  CAS  Google Scholar 

  4. Dominguez, R., Freyzon, Y., Trybus, K.M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  Google Scholar 

  5. Houdusse, A., Kalabokis, V.N., Himmel, D., Szent-Gyorgyi, A.G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  Google Scholar 

  6. Kliche, W., Fujita-Becker, S., Kollmar, M., Manstein, D.J. & Kull, F.J. Structure of a genetically engineered molecular motor. EMBO J. 20, 40–46 (2001).

    Article  CAS  Google Scholar 

  7. Kollmar, M., Dürrwang, U., Kliche, W., Manstein, D.J. & Kull, F.J. Crystal structure of the motor domain of a class-I myosin. EMBO J. 21, 2517–2525 (2002).

    Article  CAS  Google Scholar 

  8. Furch, M., Fujita-Becker, S., Geeves, M.A., Holmes, K.C. & Manstein, D.J. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. J. Mol. Biol. 290, 797–809 (1999).

    Article  CAS  Google Scholar 

  9. Yount, R.G., Lawson, D. & Rayment, I. Is myosin a 'back door' enzyme? Biophys. J. 68, 47S–49S (1995).

    Google Scholar 

  10. Himmel, D.M. et al. Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc. Natl. Acad. Sci. USA 99, 12645–12650 (2002).

    Article  CAS  Google Scholar 

  11. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep. 3, 1035–1041 (2002).

    Article  CAS  Google Scholar 

  12. Smith, C.A. & Rayment, I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602 (1996).

    Article  CAS  Google Scholar 

  13. Vale, R.D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  Google Scholar 

  14. Kull, F.J., Vale, R.D. & Fletterick, R.J. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J. Muscle Res. Cell Motil. 19, 877–886 (1998).

    Article  CAS  Google Scholar 

  15. Goody, R.S. & Hofmann-Goody, W. Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur. Biophys. J. 31, 268–274 (2002).

    Article  CAS  Google Scholar 

  16. Volkmann, N. et al. Evidence for cleft closure in actomyosin upon ADP release. Nat. Struct. Biol. 7, 1147–1155 (2000).

    Article  CAS  Google Scholar 

  17. Volkmann, N. et al. Myosin isoforms show unique conformations in the actin-bound state. Proc. Natl. Acad. Sci. USA 6, 3227–3232 (2003).

    Article  Google Scholar 

  18. Yengo, C.M. De La Cruz, E.M., Chrin, L.R., Gaffney, D.P. 2nd & Berger, C.L. Actin-induced closure of the actin-binding cleft of smooth muscle myosin. J. Biol. Chem. 277, 24114–24119 (2002).

    Article  CAS  Google Scholar 

  19. Friedman, A.L., Geeves, M.A., Manstein, D.J. & Spudich, J.A. Kinetic characterization of myosin head fragments with long-lived myosin-ATP states. Biochemistry 37, 9679–9687 (1998).

    Article  CAS  Google Scholar 

  20. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  21. Niemann, H.H., Knetsch, M.L., Scherer, A., Manstein, D.J. & Kull, F.J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001).

    Article  CAS  Google Scholar 

  22. Manstein, D.J., Schuster, H.P., Morandini, P. & Hunt, D.M. Cloning vectors for the production of proteins in Dictyostelium discoideum. Gene 162, 129–134 (1995).

    Article  CAS  Google Scholar 

  23. Manstein, D.J. & Hunt, D.M. Overexpression of myosin motor domains in Dictyostelium: screening of transformants and purification of the affinity tagged protein. J. Mus. Res. Cell Motil. 16, 325–332 (1995).

    Article  CAS  Google Scholar 

  24. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  25. Brunger, A.T., et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model 2, 132–134 (1997).

    Article  Google Scholar 

  28. Merritt, E.A. and Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Kabsch for crystallographic advice, S. Zimmermann and A. Scherer for excellent technical assistance, S. Fujita-Becker for in vitro motility analysis and K.C. Holmes for helpful comments, discussions and continuous support. The work was supported by Molecular Motors project grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar J Manstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reubold, T., Eschenburg, S., Becker, A. et al. A structural model for actin-induced nucleotide release in myosin. Nat Struct Mol Biol 10, 826–830 (2003). https://doi.org/10.1038/nsb987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing