Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations

Abstract

The apomyoglobin pH 4 folding intermediate contains the A, G, and H helices of myoglobin. Helix destabilizing mutations in the A and G helices are used to test whether the pH 4 folding intermediate of apomyoglobin folds cooperatively. Single glycine or proline mutations destabilize the intermediate substantially, showing that intrinsic helix propensities are important for stability of the intermediate. The A and G helices interact to stabilize each other, as shown by the effect of mutations in the G helix on the unfolding of the A helix, which can be monitored by tryptophan fluorescence. Wild type and the most stable mutant unfold in a two-state reaction, as shown by superposition of the unfolding curves measured by two probes (far-UV circular dichroism and Trp fluorescence), while unfolding of the less stable mutants is more complex. Cooperativity and stability of folding are linked also when stabilizing anions (sulphate, perchlorate) are used to adjust stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takano, T. Structure of myoglobin refined at 2.0 Å resolution I, crystal log raphic refinement of metmyoglobin from sperm whale. J. Mol. Biol. 110, 537–568 (1977).

    Article  CAS  Google Scholar 

  2. Kay, M.S. & Baldwin, R.L. Packing interactions in the apomyoglobin folding intermediate. Nature Struct. Biol. 3, 439–445 (1996).

    Article  CAS  Google Scholar 

  3. Jamin, M. & Baldwin, R.L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nature Struct. Biol. 3, 613–618 (1996).

    Article  CAS  Google Scholar 

  4. Schulman, B.A. & Kim, P.S. Proline scanning mutagenesis of a molten globule reveals noncooperative formation of a protein's overall topology. Nature Struct. Biol. 3, 682–687 (1996).

    Article  CAS  Google Scholar 

  5. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  6. Wong, K.P. & Tanford, C. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J. Biol. Chem. 248, 8518–8523 (1973).

    CAS  PubMed  Google Scholar 

  7. Kuwajima, K., Nitta, K., Yoneyarna, M. & Sugai, S. Three-state denaturation of α-lactalbumin by guanidine hydrochloride. J. Mol. Biol. 106, 359–373 (1976).

    Article  CAS  Google Scholar 

  8. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  9. Loh, S.N., Kay, M.S. & Baldwin, R.L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc. Natl. Acad. Sci. USA 92, 5446–5450 (1995).

    Article  CAS  Google Scholar 

  10. Rohl, C.A., Chakrabartty, A. & Baldwin, R.L. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Sci. 5, 2623–2637 (1996).

    Article  CAS  Google Scholar 

  11. Lesk, A.M. & Chothia, C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J. Mol. Biol. 136, 225–270 (1980).

    Article  CAS  Google Scholar 

  12. Goto, Y., Takahashi, N. & Fink, A.L. Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480–3488 (1990).

    Article  CAS  Google Scholar 

  13. Santoro, M.M. & Bolen, D.W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl a-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  14. Serrano, L., Kellis, J.T. Jr, Cann, P., Matouschek, A. & Fersht, A.R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 224, 783–804 (see page 785) (1992).

    Article  CAS  Google Scholar 

  15. Griko, Y.V. ; Privalov, P.L. Thermodynamic puzzle of apomyoglobin unfolding. J. Mol. Biol. 235, 1318–1325 (1994).

    Article  CAS  Google Scholar 

  16. Nishii, I., Kataoka, M. & Goto, Y. Thermodynamic stability of the molten globule states of apomyoglobin. J. Mol. Biol. 250, 223–238 (1995).

    Article  CAS  Google Scholar 

  17. Richmond, T.J. & Richards, P.M. Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119, 537–555 (1978).

    Article  CAS  Google Scholar 

  18. Baldwin, R.L. How does protein folding get started? Trends Biochem. Sci. 14, 291–294 (1989).

    Article  CAS  Google Scholar 

  19. Muñoz, V. & Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nature Struct. Biol. 1, 399–409 (1994).

    Article  Google Scholar 

  20. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: a laboratory manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  21. Teale, F.W.J. Cleavage of the haem-protein link by acid methylethylketone. Biochim. Biophys. Acta. 35, 543–543 (1959).

    Article  CAS  Google Scholar 

  22. Fanelli, A.R., Antonini, E. & Caputo, A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim. Biophys. Acta. 30, 608–615 (1958).

    Article  CAS  Google Scholar 

  23. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  Google Scholar 

  24. Kraulis, P.J. Molscript - A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Baldwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Kay, M. & Baldwin, R. Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations. Nat Struct Mol Biol 4, 925–930 (1997). https://doi.org/10.1038/nsb1197-925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing