Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH

An Erratum to this article was published on 01 December 1996

Abstract

Despite the general observation that single domain proteins denature in a completely cooperative manner, amide hydrogen exchange of ribonuclease H in low levels of denaturant demonstrates the existence of two partially folded species. The structures of these marginally stable species resemble kinetic folding intermediates and the molten globule state of the protein. These data suggest that the first region to fold is the thermodynamically most stable portion of the protein and that the molten globule is a high free energy conformation present at equilibrium in the native state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  2. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  3. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. Febs. Lett. 262, 20–24 (1990).

    Article  CAS  Google Scholar 

  4. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  5. Dobson, C.M. Protein folding. Solid evidence for molten globules. Curr. Biol. 4, 636–40 (1994).

    Article  CAS  Google Scholar 

  6. Mayo, S.L. & Baldwin, R.L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262, 873–876 (1993).

    Article  CAS  Google Scholar 

  7. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  8. Katayanagi, K. et al. Three-dimensional structure of ribonuclease H from E. coli. Nature 347, 306–309 (1990).

    Article  CAS  Google Scholar 

  9. Yamasaki, K., Ogasahara, K., Yutani, K., Oobatake, M. & Kanaya, S. Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study. Biochemistry 34, 16552–16562 (1995).

    Article  CAS  Google Scholar 

  10. Dabora, J.M., Pelton, J.G. & Marqusee, S. Structure of the acid state of E. coli ribonuclease HI. Biochemistry, in the press.

  11. Norwood, T.J., Boyd, J., Heritage, J., Soffe, N. & Campbell, I.D. Comparison of techniques for H-1-detected heteronuclear H-1-N-15 spectroscopy. J. Magn. Reson. 87, 488–501 (1990).

    CAS  Google Scholar 

  12. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. & Tschudin, R. Comparison of different modes of 2-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson. 86, 304–318 (1990).

    CAS  Google Scholar 

  13. Grzesiek, S. & Bax, A. The Importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).

    Article  CAS  Google Scholar 

  14. Hvidt, A. & Nielsen, S.O. Hydrogen exchange in proteins. Adv. Prot Chem. 21, 288–386 (1966).

    Google Scholar 

  15. Englander, S.W. & Kallenbach, N.R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655 (1983).

    Article  CAS  Google Scholar 

  16. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  17. Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  CAS  Google Scholar 

  18. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  19. Mandel, A.M., Akke, M. & Palmer, A. A.3. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–63 (1995).

    Article  CAS  Google Scholar 

  20. Yamasaki, K., Saito, M., Oobatake, M. & Kanaya, S. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models. Biochemistry 34, 6587–601 (1995).

    Article  CAS  Google Scholar 

  21. Myer, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein folding. Prot. Sci. 4, 2138–2148 (1995).

    Article  Google Scholar 

  22. Dabora, J.M. & Marqusee, S. Equilibrium unfolding of Escherichia coli ribonuclease H: characterization of a partially folded state. Prot. Sci. 3, 1401–1408 (1994).

    Article  CAS  Google Scholar 

  23. Matthews, C.R. Pathways of protein folding. Ann. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  24. Loh, S.L., Prehoda, K.E., Wang, J. & Markley, J.L. Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry 32, 11022–11028 (1993).

    Article  CAS  Google Scholar 

  25. Orban, J., Alexander, P. & Bryan, P. Hydrogen-deuterium exchange in the free and immunoglobulin G-bound protein G B-domain, Biochemistry 33, 5702–5710 (1994).

    Article  CAS  Google Scholar 

  26. Perret, S., Clark, J., Hounslow, A.M. & Fersht, A.R. Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Biochemistry 34, 9288–9298 (1995).

    Article  Google Scholar 

  27. Swint-Kruse, L. & Robertson, A.D. Temperature and pH dependences of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry 35, 171–180 (1996).

    Article  CAS  Google Scholar 

  28. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  29. Chen, H., Hughes, D.D., Chan, T.-A., Sedat, J.W. & Agard, D.A. IVE(Image Visualization Environment): A software platform for all three-dimensional microscopy applications. J. Struct. Biol. 116, 56–60 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamberlain, A., Handel, T. & Marqusee, S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Mol Biol 3, 782–787 (1996). https://doi.org/10.1038/nsb0996-782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing