Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation of a local tertiary folding transition in the context of a globally folded RNA

Abstract

Binding of the Tetrahymena ribozyme's oligonucleotide substrate represents a local folding event in the context of a globally folded RNA. Substrate binding involves P1 duplex formation with the ribozyme's internal guide sequence to give an ‘open complex’, followed by docking of the P1 duplex into tertiary interactions to give a ‘closed complex’. We have isolated the open complex as a thermodynamically stable species using a site-specific modification and high Na+ concentrations. This has allowed characterization of P1 docking, which represents a folding transition between local secondary and local tertiary structure. P1 docking is entropically driven, possibly accompanied by a release of bound water molecules. Strategies analogous to those described here can be used more generally to study local folding events in large structured RNAs and to explore the structural and energetic landscape for RNA folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T.R. Conserved sequences and structures of group I introns: Building an active site for RNA catalysis. Gene 73, 259–271 (1988).

    Article  CAS  Google Scholar 

  2. Michel, F. & Westhof, E. Modeling of the three-dimensional architecture of group I introns based on comparative sequence analysis. J Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  3. Downs, W.D. & Cech, T.R. An ultraviolet-inducible adenosine-adenosine cross link reflects the catalytic structure of the Tetrahymena ribozyme. Biochemistry 29, 5605–5613 (1990).

    Article  CAS  Google Scholar 

  4. Inoue, T. & Cech, T.R. Secondary structure of the circular form of the Tetrahymena ribosomal RNA intervening sequence: A technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc. Natl. Acad Sci. USA 82, 648–652 (1985).

    Article  CAS  Google Scholar 

  5. Jaeger, J.A., Zuker, M. & Turner, D.H. Melting and chemical modification of a cyclized self-splicing group I intron: Similarity of structures in 1 M Na+, in 10 mM Mg2+, and in the presence of substrate. Biochemistry 29, 10147–10158 (1990).

    Article  CAS  Google Scholar 

  6. Jaeger, L., Michel, F. & Westhof, E. Involvement of a GNRA tetraloop in long-range tertiary interactions. J. Molec Biol. 236, 1271–1276 (1994).

    Article  CAS  Google Scholar 

  7. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  Google Scholar 

  8. Murphy, F.L. & Cech, T.R. GAAA tetraloop and conserved bulge stabilize tertiary structure of group I intron domain. J. Molec. Biol. 236, 49–63 (1994).

    Article  CAS  Google Scholar 

  9. Murphy, F.L. & Cech, T.R. An independently folding domain of tertiary structure within the Tetrahymena ribozyme. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  Google Scholar 

  10. Pyle, A.M., Murphy, F.L. & Cech, T.R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  Google Scholar 

  11. Wang, J.-F., Downs, W.D. & Cech, T.R. Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260, 504–508 (1993).

    Article  CAS  Google Scholar 

  12. Wang, J.-F. & Cech, T.R. Metal ion dependence of active site structure of the Tetrahymena ribozyme revealed by site-specific photo-cross linking. J. Am. Chem. Soc. 116, 4178–4182 (1994).

    Article  CAS  Google Scholar 

  13. Celander, D.W. & Cech, T.R. Visualizing the higher order folding of a catalytic RNA molecule. Science 251, 401–407 (1991).

    Article  CAS  Google Scholar 

  14. Banerjee, A.R., Jaeger, J.A. & Turner, D.H. Thermal unfolding of a group I Ribozyme: The low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32, 153–163 (1993).

    Article  CAS  Google Scholar 

  15. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  16. Laggerbauer, B., Murphy, F.L. & Cech, T.R. Two major folding transitions of the Tetrahymena catalytic RNA. EMBO J. 13, 2669–2676 (1994).

    Article  CAS  Google Scholar 

  17. Bevilacqua, P.C., Kierzek, R., Johnson, K.A. & Turner, D.H. Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow methods. Science 258, 1355–1358 (1992).

    Article  CAS  Google Scholar 

  18. Zarrinkar, P.P. & Williamson, J.R. Kinetic intermediates in RNA folding. Science 265, 918–924 (1994).

    Article  CAS  Google Scholar 

  19. Privalov, P.L. Cold denaturation of proteins. Crit. Rev. in Biochem. and Mol. Biol. 25, 281–305 (1990).

    Article  CAS  Google Scholar 

  20. Herschlag, D. & Cech, T.R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  Google Scholar 

  21. Sugimoto, N., Sasaki, M., Kierzek, R. & Turner, D.H. Chem. Lett. 2223–2226 (1989).

    Article  Google Scholar 

  22. Pyle, A.M., McSwiggen, J.A. & Cech, T.R. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proc. Natl. Acad. Sci. USA 87, 8187–8191 (1990).

    Article  CAS  Google Scholar 

  23. Pyle, A.M. & Cech, T.R. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups. Nature 350, 628–631 (1991).

    Article  CAS  Google Scholar 

  24. Bevilacqua, P.C. & Turner, D.H. Comparison of binding of mixed ribose-deoxyribose analogs of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: Evidence for ribozyme specific interactions with 2′ OH groups. Biochemistry 30, 10632–10640 (1991).

    Article  CAS  Google Scholar 

  25. Herschlag, D., Eckstein, F. & Cech, T.R. Contributions of 2′- hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA. Biochemistry 32, 8299–8321 (1993).

    Article  CAS  Google Scholar 

  26. Strobel, S.A. & Cech, T.R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32, 13593–13604 (1993).

    Article  CAS  Google Scholar 

  27. Pyle, A.M. et al. Replacement of the conserved G·U with a G·C Pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity and fidelity. Biochemistry 33, 13856–13863 (1994).

    Article  CAS  Google Scholar 

  28. Knitt, D.S., Narlikar, G.J. & Herschlag, D. Dissection of the role of the conserved G·U pair in group I RNA self-splicing. Biochemistry 33, 13864–13879 (1994).

    Article  CAS  Google Scholar 

  29. Strobel, S.A. & Cech, T.R. Minor groove recognition of the conserved G·U pair at the Tetrahymena ribozyme reaction site. Science 267, 675–679 (1995).

    Article  CAS  Google Scholar 

  30. Herschlag, D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31, 1386–1399 (1992).

    Article  CAS  Google Scholar 

  31. Narlikar, G.J., Gopalakrishnan, V., McConnell, T.S., Usman, N. & Herschlag, D. Use of binding energy by an RNA enzyme for positioning and substrate destabilization. Proc. Natl. Acad. Sci. 92, 3668–3672 (1995).

    Article  CAS  Google Scholar 

  32. Li, Y., Bevilacqua, P.C., Mathews, D. & Turner, D.H. Thermodynamic and activation parameters for binding of a pyrene labeled substrate by the Tetrahymena ribozyme: Docking is not diffusion controlled and is driven by a favorable entropy change. Biochemistry 34, 14394–14399 (1995).

    Article  CAS  Google Scholar 

  33. Dill, K.A. Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990).

    Article  CAS  Google Scholar 

  34. Rajagopal, J., Doudna, J.A. & Szostak, J.W. Stereochemical course of catalysis by the Tetrahymena ribozyme. Science 244, 692–694 (1989).

    Article  CAS  Google Scholar 

  35. Herschlag, D., Piccirilli, J.A. & Cech, T.R. Ribozyme-catalyzed and nonenzymatic reactions of phosphate diesters. Biochemistry 30, 4844–4854 (1991).

    Article  CAS  Google Scholar 

  36. McConnell, T.S. & Cech, T.R. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction. Biochemistry 34, 4056–4067 (1995).

    Article  CAS  Google Scholar 

  37. Freier, S.M. et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377 (1986).

    Article  CAS  Google Scholar 

  38. Herschlag, D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871–20874 (1995).

    Article  CAS  Google Scholar 

  39. Uhlenbeck, O.C. Keeping RNA happy. RNA 1, 4–6 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Doudna, J.A., Grosshans, C., Gooding, A. & Kundrot, C.E. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc. Natl. Acad. Sci. USA 90, 7829–7833 (1993).

    Article  CAS  Google Scholar 

  41. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Sequence specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  Google Scholar 

  42. Scaringe, S.A., Francklyn, C. & Usman, N. Chemical synthesis of biologically active oligoribonucleotides using beta-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res. 18, 5433–5441 (1990).

    Article  CAS  Google Scholar 

  43. McConnel, T.S., Cech, T.R. & Herschlag, D. Guanosine binding to the Tetrahymena ribozyme: Thermodynamic coupling with oligonucleotide binding. Proc. Natl. Acad. Sci. USA 90, 8362–8366 (1993).

    Article  Google Scholar 

  44. Knitt, D.S. & Herschlag, D. pH dependencies of the Tetrahymena ribozyme reveal an unconventional origin of an apparent pKa . Biochemistry 35, 1560–1570 (1996).

    Article  CAS  Google Scholar 

  45. Good, N.E. et al. Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966).

    Article  CAS  Google Scholar 

  46. Cole, P.E., Yang, S.K. & Crothers, D.M. Conformational changes of transfer ribonucleic acid.Equilibrium phase diagrams. Biochemistry 11, 4358–4368 (1972).

    Article  CAS  Google Scholar 

  47. Herschlag, D. & Cech, T.R. DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature 344, 405–409 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narlikar, G., Herschlag, D. Isolation of a local tertiary folding transition in the context of a globally folded RNA. Nat Struct Mol Biol 3, 701–710 (1996). https://doi.org/10.1038/nsb0896-701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0896-701

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing