Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telomeres and telomerase in prostate cancer development and therapy

Key Points

  • Telomerase activation or the cancer-specific, telomerase-independent alternative lengthening of telomeres (ALT) mechanism are two telomere maintenance mechanisms in human cells. Most prostate cancers activate telomerase and a subset of lethal metastases use ALT

  • Substantial telomere shortening is common in prostate cancers and in the precursor lesion prostatic intraepithelial neoplasia (PIN). Moderate telomere shortening has also been observed in cancer-associated stroma

  • The mechanisms for telomere shortening in prostate cancer and PIN are not fully understood; in addition to replication-associated telomere loss, inflammation and reactive oxygen species might be contributors

  • Telomere length assessment might be useful in prostate cancer diagnosis and in current prognostic tools to more reliably predict whether organ-confined prostate cancer will progress to lethal metastatic disease

  • Telomerase-targeted single-agent treatments for solid cancers have, to date, been ineffective in clinical trials; these therapies have yet to be tested in prostate cancer and might potentially be useful in combination with established androgen receptor (AR)-targeted treatments

  • Disruption of AR function in AR-positive prostate cancer cells activates the DNA damage response (DDR) at telomeres; thus, DDR inhibitors might potentiate the effects of androgen deprivation therapy

Abstract

Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; however, continued telomere erosion is unsustainable and must be mitigated to ensure cancer cell survival and unlimited replication potential. Prostate cancers predominantly maintain telomeres by activating telomerase, but alternative mechanisms of telomere extension can occur in metastatic disease. Telomerase activity and telomere length assessment might be useful in prostate cancer diagnosis and prognosis. Telomere shortening in normal stromal cells has been associated with prostate cancer, whereas variable telomere lengths in prostate cancer cells and telomere shortening in cancer-associated stromal cells correlated with lethal disease. Single-agent telomerase-targeted treatments for solid cancers were ineffective in clinical trials but have not been investigated in prostate cancer and might be useful in combination with established regimens. Telomere-directed strategies have not been explored as extensively. Telomere deprotection strategies have the advantage of being effective in both telomerase-dependent and telomerase-independent cancers. Disruption of androgen receptor function in prostate cancer cells results in telomere dysfunction, indicating telomeres and telomerase as potential therapeutic targets in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere shortening during prostate tumorigenesis and cancer progression.
Figure 2: Reactive oxygen species as a cause of telomere shortening in prostate tumorigenesis.
Figure 3: Potential applications directed at telomeres and telomerase in prostate cancer management.

Similar content being viewed by others

References

  1. Murray, A. W. & Szostak, J. W. Construction of artificial chromosomes in yeast. Nature 305, 189–193 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Hsiao, C. L. & Carbon, J. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc. Natl Acad. Sci. USA 76, 3829–3833 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stinchcomb, D. T., Struhl, K. & Davis, R. W. Isolation and characterisation of a yeast chromosomal replicator. Nature 282, 39–43 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Stinchcomb, D. T., Mann, C. & Davis, R. W. Centromeric DNA from Saccharomyces cerevisiae. J. Mol. Biol. 158, 157–190 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Szostak, J. W. & Blackburn, E. H. Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn, E. H. & Challoner, P. B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell 36, 447–457 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Moyzis, R. K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samassekou, O., Gadji, M., Drouin, R. & Yan, J. Sizing the ends: normal length of human telomeres. Ann. Anat. 192, 284–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, Z., Shiue, L., Kaplan, S. & de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 12, 4834–4843 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Houghtaling, B. R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones, M. et al. The shelterin complex and hematopoiesis. J. Clin. Invest. 126, 1621–1629 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  23. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  24. Watson, J. D. Origin of concatemeric T7 DNA. Nat. New Biol. 239, 197–201 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Olovnikov, A. M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W. & Harley, C. B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. von Zglinicki, T., Saretzki, G., Ladhoff, J., d' Adda di Fagagna, F. & Jackson, S. P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126, 111–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Zou, Y., Sfeir, A., Gryaznov, S. M., Shay, J. W. & Wright, W. E. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol. Biol. Cell 15, 3709–3718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. McClintock, B. The stability of broken ends of chromosomes in Zea Mays. Genetics 26, 234–282 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Hackett, J. A., Feldser, D. M. & Greider, C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Haffner, M. C. et al. Tracking the clonal origin of lethal prostate cancer. J. Clin. Invest. 123, 4918–4922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sommerfeld, H. J. et al. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res. 56, 218–222 (1996).

    CAS  PubMed  Google Scholar 

  40. Greider, C. W. & Blackburn, E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Podlevsky, J. D., Bley, C. J., Omana, R. V., Qi, X. & Chen, J. J. The telomerase database. Nucleic Acids Res. 36, D339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Shippen-Lentz, D. & Blackburn, E. H. Functional evidence for an RNA template in telomerase. Science 247, 546–552 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Batista, L. F. Telomere biology in stem cells and reprogramming. Prog. Mol. Biol. Transl Sci. 125, 67–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Allshire, R. C., Dempster, M. & Hastie, N. D. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res. 17, 4611–4627 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berges, R. R. et al. Implication of cell kinetic changes during the progression of human prostatic cancer. Clin. Cancer Res. 1, 473–480 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–6409 (2002).

    CAS  PubMed  Google Scholar 

  48. Kyprianou, N., Tu, H. & Jacobs, S. C. Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Hum. Pathol. 27, 668–675 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Helpap, B. Cell kinetic studies on prostatic intraepithelial neoplasia (PIN) and atypical adenomatous hyperplasia (AAH) of the prostate. Pathol. Res. Pract. 191, 904–907 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. De Marzo, A. M., Nelson, W. G., Meeker, A. K. & Coffey, D. S. Stem cell features of benign and malignant prostate epithelial cells. J. Urol. 160, 2381–2392 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Heatfield, B. M., Sanefuji, H. & Trump, B. F. Studies on carcinogenesis of human prostate. III. Long-term explant culture of normal prostate and benign prostatic hyperplasia: transmission and scanning electron microscopy. J. Natl Cancer Inst. 69, 757–766 (1982).

    CAS  PubMed  Google Scholar 

  52. Merchant, D. J., Clarke, S. M., Ives, K. & Harris, S. Primary explant culture: an in vitro model of the human prostate. Prostate 4, 523–542 (1983).

    Article  CAS  PubMed  Google Scholar 

  53. Bonkhoff, H., Stein, U. & Remberger, K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24, 114–118 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Bostwick, D. G. & Brawer, M. K. Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 59, 788–794 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Rohr, H. P. & Bartsch, G. Human benign prostatic hyperplasia: a stromal disease? New perspectives by quantitative morphology. Urology 16, 625–633 (1980).

    Article  CAS  PubMed  Google Scholar 

  56. McNeal, J. E., Haillot, O. & Yemoto, C. Cell proliferation in dysplasia of the prostate: analysis by PCNA immunostaining. Prostate 27, 258–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Rane, J. K. et al. Telomerase activity and telomere length in human benign prostatic hyperplasia stem-like cells and their progeny implies the existence of distinct basal and luminal cell lineages. Eur. Urol. 69, 551–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Bostwick, D. G. Prostatic intraepithelial neoplasia (PIN): current concepts. J. Cell Biochem. Suppl 16H, 10–19 (1992).

    Article  CAS  Google Scholar 

  59. Mostofi, F. K., Sesterhenn, I. A. & Davis, C. J. Jr. Prostatic intraepithelial neoplasia (PIN): morphological clinical significance. Prostate Suppl. 4, 71–77 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Koeneman, K. S. et al. Telomerase activity, telomere length, and DNA ploidy in prostatic intraepithelial neoplasia (PIN). J. Urol. 160, 1533–1539 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, W., Kapusta, L. R., Slingerland, J. M. & Klotz, L. H. Telomerase activity in prostate cancer, prostatic intraepithelial neoplasia, and benign prostatic epithelium. Cancer Res. 58, 619–621 (1998).

    CAS  PubMed  Google Scholar 

  62. National Cancer Institute (2016).

  63. Thompson, S. J. et al. P53 and Ki-67 immunoreactivity in human prostate cancer and benign hyperplasia. Br. J. Urol. 69, 609–613 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Shay, J. W. & Wright, W. E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Muller, F. The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J. Am. Aging Assoc. 23, 227–253 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kryston, T. B., Georgiev, A. B., Pissis, P. & Georgakilas, A. G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Halliwell, B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Its role in degradation of hyaluronic acid by a superoxide-generating system. FEBS Lett. 96, 238–242 (1978).

    Article  CAS  PubMed  Google Scholar 

  69. Liochev, S. I. & Fridovich, I. The role of O2.- in the production of HO.: in vitro and in vivo. Free Radic. Biol. Med. 16, 29–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. McCord, J. M. & Day, E. D. Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 86, 139–142 (1978).

    Article  CAS  PubMed  Google Scholar 

  71. Burrows, C. J. & Muller, J. G. Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Gajewski, E., Rao, G., Nackerdien, Z. & Dizdaroglu, M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry 29, 7876–7882 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Kawanishi, S. & Oikawa, S. Mechanism of telomere shortening by oxidative stress. Ann. NY Acad. Sci. 1019, 278–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Fortini, P. et al. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat. Res. 531, 127–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Wilson, D. M., 3rd & Bohr, V. A. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst.) 6, 544–559 (2007).

    Article  CAS  Google Scholar 

  76. Sitte, N., Saretzki, G. & von Zglinicki, T. Accelerated telomere shortening in fibroblasts after extended periods of confluency. Free Radic. Biol. Med. 24, 885–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Petersen, S., Saretzki, G. & von Zglinicki, T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res. 239, 152–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Kruk, P. A., Rampino, N. J. & Bohr, V. A. DNA damage and repair in telomeres: relation to aging. Proc. Natl Acad. Sci. USA 92, 258–262 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Webb, C. J., Wu, Y. & Zakian, V. A. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect. Biol. 5, a012666 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rhodes, D. & Lipps, H. J. G-Quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 20, 1126–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gurel, B. et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomarkers Prev. 23, 847–856 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vidal, A. C. et al. Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin. Cancer Res. 21, 756–762 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Stimac, G. et al. Aggressiveness of inflammation in histological prostatitis—correlation with total and free prostate specific antigen levels in men with biochemical criteria for prostate biopsy. Scott. Med. J. 54, 8–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Fujita, K. et al. Prostatic inflammation detected in initial biopsy specimens and urinary pyuria are predictors of negative repeat prostate biopsy. J. Urol. 185, 1722–1727 (2011).

    Article  PubMed  Google Scholar 

  91. Delongchamps, N. B. et al. Evaluation of prostatitis in autopsied prostates—is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J. Urol. 179, 1736–1740 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nickel, J. C., Downey, J., Young, I. & Boag, S. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int. 84, 976–981 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Nickel, J. C. et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur. Urol. 54, 1379–1384 (2008).

    Article  PubMed  Google Scholar 

  94. Sfanos, K. S., Isaacs, W. B. & De Marzo, A. M. Infections and inflammation in prostate cancer. Am. J. Clin. Exp. Urol. 1, 3–11 (2013).

    PubMed  PubMed Central  Google Scholar 

  95. Sfanos, K. S., Wilson, B. A., De Marzo, A. M. & Isaacs, W. B. Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proc. Natl Acad. Sci. USA 106, 3443–3448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Marzo, A. M., Marchi, V. L., Epstein, J. I. & Nelson, W. G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Feneley, M. R., Young, M. P., Chinyama, C., Kirby, R. S. & Parkinson, M. C. Ki-67 expression in early prostate cancer and associated pathological lesions. J. Clin. Pathol. 49, 741–748 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruska, K. M., Sauvageot, J. & Epstein, J. I. Histology and cellular kinetics of prostatic atrophy. Am. J. Surg. Pathol. 22, 1073–1077 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. van Leenders, G. J. et al. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am. J. Pathol. 162, 1529–1537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Putzi, M. J. & De Marzo, A. M. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 56, 828–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Aizer, A. A. et al. Lack of reduction in racial disparities in cancer-specific mortality over a 20-year period. Cancer 120, 1532–1539 (2014).

    Article  PubMed  Google Scholar 

  102. Eastham, J. A. et al. Clinical characteristics and biopsy specimen features in African-American and white men without prostate cancer. J. Natl Cancer Inst. 90, 756–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Peto, J. Cancer epidemiology in the last century and the next decade. Nature 411, 390–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Hsu, A., Bray, T. M. & Ho, E. Anti-inflammatory activity of soy and tea in prostate cancer prevention. Exp. Biol. Med. (Maywood) 235, 659–667 (2010).

    Article  CAS  Google Scholar 

  105. Heaphy, C. M. et al. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov. 3, 1130–1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Nunzio, C., Presicce, F. & Tubaro, A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat. Rev. Urol. 13, 613–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Cookson, M. S., Reuter, V. E., Linkov, I. & Fair, W. R. Glutathione S-transferase PI (GST-pi) class expression by immunohistochemistry in benign and malignant prostate tissue. J. Urol. 157, 673–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, W. H. et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA 91, 11733–11737 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mian, O. Y. et al. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress. Prostate 76, 199–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Kanwal, R. et al. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol. Carcinog. 53, 8–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Malhotra, A. et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 23, 762–776 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Storchova, Z. & Kloosterman, W. P. The genomic characteristics and cellular origin of chromothripsis. Curr. Opin. Cell Biol. 40, 106–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, C. et al. Poly-gene fusion transcripts and chromothripsis in prostate cancer. Genes Chromosomes Cancer 51, 1144–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kovtun, I. V., Murphy, S. J., Johnson, S. H., Cheville, J. C. & Vasmatzis, G. Chromosomal catastrophe is a frequent event in clinically insignificant prostate cancer. Oncotarget 6, 29087–29096 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tu, L. et al. Widespread telomere instability in prostatic lesions. Mol. Carcinog. 55, 842–852 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Feijoo, P., Dominguez, D., Tusell, L. & Genesca, A. Telomere-dependent genomic integrity: evolution of the fusion-bridge-breakage cycle concept. Curr. Pharm. Des. 20, 6375–6385 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Vukovic, B. et al. Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer. Cytogenet. Genome Res. 116, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Xi, L. & Cech, T. R. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res. 42, 8565–8577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cohen, S. B. et al. Protein composition of catalytically active human telomerase from immortal cells. Science 315, 1850–1853 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    Article  CAS  PubMed  Google Scholar 

  126. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Counter, C. M. et al. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 16, 1217–1222 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Nieto, C. M., Rider, L. C. & Cramer, S. D. Influence of stromal-epithelial interactions on androgen action. Endocr. Relat. Cancer 21, T147–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Meeker, A. K., Sommerfeld, H. J. & Coffey, D. S. Telomerase is activated in the prostate and seminal vesicles of the castrated rat. Endocrinology 137, 5743–5746 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Ravindranath, N. et al. Androgen depletion activates telomerase in the prostate of the nonhuman primate, Macaca mulatta. Prostate 49, 79–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Moehren, U. et al. Wild-type but not mutant androgen receptor inhibits expression of the hTERT telomerase subunit: a novel role of AR mutation for prostate cancer development. FASEB J. 22, 1258–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Guo, C., Armbruster, B. N., Price, D. T. & Counter, C. M. In vivo regulation of hTERT expression and telomerase activity by androgen. J. Urol. 170, 615–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Cho, S. D. et al. Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription. Mol. Cancer Ther. 3, 605–611 (2004).

    CAS  PubMed  Google Scholar 

  136. Liu, S. et al. Telomerase as an important target of androgen signaling blockade for prostate cancer treatment. Mol. Cancer Ther. 9, 2016–2025 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Renaud, S. et al. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res. 35, 1245–1256 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vinagre, J. et al. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4, 2185 (2013).

    Article  PubMed  CAS  Google Scholar 

  140. Stoehr, R. et al. Frequency of TERT Promoter Mutations in Prostate Cancer. Pathobiology 82, 53–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl Acad. Sci. USA 101, 811–816 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dhanasekaran, S. M. et al. Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J. 19, 243–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Yu, Y. P. et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Latil, A. et al. htert expression correlates with MYC over-expression in human prostate cancer. Int. J. Cancer 89, 172–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nat. Genet. 21, 220–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Kyo, S. et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res. 28, 669–677 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jenkins, R. B., Qian, J., Lieber, M. M. & Bostwick, D. G. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531 (1997).

    CAS  PubMed  Google Scholar 

  151. Nupponen, N. N., Kakkola, L., Koivisto, P. & Visakorpi, T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am. J. Pathol. 153, 141–148 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koh, C. M. et al. MYC and Prostate Cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  155. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).

    Article  CAS  PubMed  Google Scholar 

  156. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Zhou, X. & Xing, D. Assays for human telomerase activity: progress and prospects. Chem. Soc. Rev. 41, 4643–4656 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Fizazi, K. et al. High detection rate of circulating tumor cells in blood of patients with prostate cancer using telomerase activity. Ann. Oncol. 18, 518–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Xu, T., Lu, B., Tai, Y. C. & Goldkorn, A. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70, 6420–6426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Goldkorn, A. et al. Circulating tumor cell telomerase activity as a prognostic marker for overall survival in SWOG 0421: a phase III metastatic castration resistant prostate cancer trial. Int. J. Cancer 136, 1856–1862 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Heaphy, C. M. et al. Prostate stromal cell telomere shortening is associated with risk of prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial. Prostate 75, 1160–1166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Loeb, S. et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65, 1046–1055 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shay, J. W., Reddel, R. R. & Wright, W. E. Cancer. Cancer and telomeres—an ALTernative to telomerase. Science 336, 1388–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Shay, J. W., Zou, Y., Hiyama, E. & Wright, W. E. Telomerase and cancer. Hum. Mol. Genet. 10, 677–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Williams, S. C. No end in sight for telomerase-targeted cancer drugs. Nat. Med. 19, 6 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Jafri, M. A., Ansari, S. A., Alqahtani, M. H. & Shay, J. W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8, 69 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Chiappori, A. A. et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann. Oncol. 26, 354–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Baerlocher, G. M. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med. 373, 920–928 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Rousseau, P. & Autexier, C. Telomere biology: Rationale for diagnostics and therapeutics in cancer. RNA Biol. 12, 1078–1082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Marian, C. O., Wright, W. E. & Shay, J. W. The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer 127, 321–331 (2010).

    CAS  PubMed  Google Scholar 

  171. Kawashima, T. et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin. Cancer Res. 10, 285–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Nemunaitis, J. et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol. Ther. 18, 429–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Middleton, G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis 31, 9–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Smith, L. L., Coller, H. A. & Roberts, J. M. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol. 5, 474–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Choi, J. et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4, e10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Jagadeesh, S. & Banerjee, P. P. Telomerase reverse transcriptase regulates the expression of a key cell cycle regulator, cyclin D1. Biochem. Biophys. Res. Commun. 347, 774–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Beck, S. et al. Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cell characteristics by inducing EGFR expression. Mol. Cells 31, 9–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu, Z. et al. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 32, 4203–4213 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Imamura, Y. & Sadar, M. D. Androgen receptor targeted therapies in castration-resistant prostate cancer: bench to clinic. Int. J. Urol. 23, 654–65 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hu, J. et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148, 651–663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rothkamm, K. et al. DNA damage foci: meaning and significance. Environ. Mol. Mutag. 56, 491–504 (2015).

    Article  CAS  Google Scholar 

  185. Cesare, A. J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Silvestre, D. C. et al. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells 29, 440–451 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kim, S. H. et al. Androgen receptor interacts with telomeric proteins in prostate cancer cells. J. Biol. Chem. 285, 10472–10476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hayashi, M. T., Cesare, A. J., Rivera, T. & Karlseder, J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature 522, 492–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Xu, T., He, K., Wang, L. & Goldkorn, A. Prostate tumor cells with cancer progenitor properties have high telomerase activity and are rapidly killed by telomerase interference. Prostate 71, 1390–1400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Muller, S. & Rodriguez, R. G-Quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Rev. Clin. Pharmacol. 7, 663–679 (2014).

    Article  PubMed  CAS  Google Scholar 

  192. Rizzo, A., Salvati, E. & Biroccio, A. Methods of studying telomere damage induced by quadruplex-ligand complexes. Methods 57, 93–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Reddy, V. et al. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction. J. Biol. Chem. 290, 25522–25533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim, S. H. et al. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J. Cell Biol. 181, 447–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhou, J. et al. Structural and functional association of androgen receptor with telomeres in prostate cancer cells. Aging (Albany NY) 5, 3–17 (2013).

    Article  CAS  Google Scholar 

  196. Fan, X. et al. hTERT gene amplification and increased mRNA expression in central nervous system embryonal tumors. Am. J. Pathol. 162, 1763–1769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, A. et al. Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas. Genes Chromosomes Cancer 34, 269–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Zhu, C. Q. et al. Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer. Br. J. Cancer 94, 1452–1459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Valentijn, L. J. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 47, 1411–1414 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Castelo-Branco, P. et al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol. 14, 534–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Bethel, C. R. et al. Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Cancer Res. 66, 10683–10690 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Bernhardt, S. L. et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br. J. Cancer 95, 1474–1482 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, P. et al. Direct and distant antitumor effects of a telomerase-selective oncolytic adenoviral agent, OBP-301, in a mouse prostate cancer model. Cancer Gene Ther. 15, 315–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Drygin, D. et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 69, 7653–7661 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hasegawa, D. et al. G-Quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem. Biophys. Res. Commun. 471, 75–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Grand, C. L. et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther. 1, 565–573 (2002).

    CAS  PubMed  Google Scholar 

  210. Salvati, E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Christopher Michael Heaphy and Dr Karen Sandell Sfanos for critical reading of the manuscript. The authors' research work was supported by NIH research grants R01CA172380 to A. M., NIH Training in Areas Fundamental to Cancer Research 5T32CA009110-38 to M. K. G., and the Prostate Cancer Foundation Young Investigators Award (granted to C. M. Heaphy and supported M. K. G.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article and made substantial contributions to discussion of its content. Both authors wrote and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alan Meeker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

T-Loop

A structure stabilized by shelterin proteins at the end of telomeres, where the telomere double-stranded DNA loops onto itself to form a partial overlap between the 3′ G-rich telomere overhang and the complementary C-rich telomere strand upstream of the overhang.

End replication problem

During DNA replication, synthesis on the lagging DNA strand of linear templates is incomplete, resulting in the loss of 50 terminal nucleotides in each round of cellular division.

Replicative senescence

In normal cells, cessation of cell division owing to substantial telomere shortening following 50 cell divisions (Hayflick limit).

BPH

Noncancerous enlargement of the prostate owing to hyperproliferation of epithelial and/or stromal cells in the prostate.

Prostatic intraepithelial neoplasia

(PIN). A noncancerous lesion in the prostate with abnormal acinar architecture, observed as overcrowding of luminal cells with enlarged nuclei.

High-grade PIN

(HGPIN). Considered a precursor lesion of prostate cancer, featuring cancer-like morphological abnormalities (for example, nuclear pleomorphism and prominent nucleoli), but no evidence of invasion.

Reactive oxygen species

(ROS). Highly reactive, oxygen-containing free radicals that can damage cellular RNA, DNA, and proteins.

8-Oxoguanine

The best-characterized and highly abundant DNA lesion arising from the oxidation of guanine through reactive oxygen species.

Base excision repair

(BER). The DNA repair pathway that employs specialized DNA glycosylases, N-glycosylase/DNA lyase and adenine DNA glycosylase, to repair 8-oxoguanine.

G-Quadruplexes

Nucleic acid secondary structures arising from Hoogsteen base pairing (an alternative form of base pairing) interactions of guanine residues.

Fragile sites

Unstable regions in the genome that are prone to break under replication stress.

Prostatic inflammatory atrophy

Prostatic lesions characterized by increased proliferation and atrophic morphology of prostatic luminal epithelial cells, associated with local inflammatory cells.

Chromothripsis

Multiple translocation events occurring in a single catastrophic event leading to imperfect rearrangement and repair of one or a few shattered chromosomes.

Overdiagnosis and overtreatment

Diagnosing patients with a disease that will not give rise to symptoms or cause death, often leading to treatment that might have no benefit and might even be harmful to the patient.

Fluorescence in situ hybridization

(FISH). A technique using fluorophore-conjugated oligonucleotide probes that bind to specific DNA sequences via complementary Watson–Crick base pairing, enabling detection of sequences of interest in intact cells or chromosomes by fluorescence microscopy.

Prostate Cancer Prevention Trial

A study conducted from 1994–2003 to investigate if the 5α-reductase inhibitor finasteride reduces prostate cancer development in men ≥55 years of age.

Peptide vaccine

A peptide conjugated with a vaccine adjuvant to stimulate an immune response against a target antigen that shares the same amino acid sequence of the peptide.

Epithelial–mesenchymal transition

The biological process in which epithelial cells acquire characteristics more consistent with mesenchymal cells, including loss of cell polarity and adhesion, and enhanced migration and invasiveness.

Telomere deprotection

Telomeres partially or completely unprotected by shelterin proteins, resulting in the activation of DDR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, M., Meeker, A. Telomeres and telomerase in prostate cancer development and therapy. Nat Rev Urol 14, 607–619 (2017). https://doi.org/10.1038/nrurol.2017.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.104

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer