Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ectopic lymphoid neogenesis in rheumatic autoimmune diseases

Key Points

  • Ectopic lymphoid structures (ELSs) develop in the target organs of a subset of patients with rheumatic autoimmune diseases and recapitulate key cellular and molecular features normally present in secondary lymphoid organs

  • ELSs in rheumatic autoimmune diseases can function as germinal centres, favouring B cell selection and plasma cell differentiation

  • B cells and plasma cells associated with ELSs in rheumatic autoimmune diseases frequently display an autoreactive phenotype towards disease-specific autoantigens

  • Ectopic germinal centres in patients with Sjögren syndrome have been associated with more severe systemic manifestations and a higher risk of B cell lymphoma

  • In rheumatoid arthritis, emerging but as-yet-inconclusive evidence suggests a role for ELSs in influencing disease evolution and the response to conventional and biologic treatments

  • Several candidate therapeutic agents that target ELS-associated pathways are currently in clinical trials for rheumatic autoimmune diseases

Abstract

Ectopic lymphoid neogenesis often occurs in the target tissues of patients with chronic rheumatic autoimmune diseases such as rheumatoid arthritis, Sjögren syndrome and other connective tissue disorders, including systemic lupus erythematosus and myositis. However, the mechanisms of ectopic lymphoid-like structure (ELS) formation and function are not entirely understood. For example, it is unclear whether ELSs indicate distinct disease phenotypes or whether they are evolutionary manifestations of chronic inflammation. Also unclear is why ELSs form in some patients but not in others. Nonetheless, ELSs frequently display functional features of ectopic germinal centres and can actively contribute to the maintenance of autoimmunity through the production of disease-specific autoantibodies; furthermore, they seem to influence disease severity and response to both synthetic and biologic DMARDs. In this Review, we discuss current knowledge and gaps in understanding of ELS formation and function including their prevalence in the above rheumatic autoimmune diseases; the mechanisms underlying their formation, maintenance and function, including positive and negative regulatory pathways; their functional relevance in the perpetuation of autoimmunity; their relationship with disease phenotypes, clinical outcomes and response to treatment; and the potential for specific targeting of ELSs through novel therapeutic modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic lymphoid structures (ELSs) that form in rheumatic autoimmune diseases share features of secondary lymphoid organs.
Figure 2: Schematic representation illustrating the journey of T follicular helper (TFH) cells from the T-cell rich area of the ectopic lymphoid structure (ELS) to the B cell follicles, where TFH cells initiate and sustain germinal centre responses.
Figure 3: Ectopic germinal centres sustain antigen-specific and disease-specific autoimmune responses.

Similar content being viewed by others

References

  1. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  2. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  3. Dennis, G. Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Klimiuk, P. A., Goronzy, J. J., Bjor nsson, J., Beckenbaugh, R. D. & Weyand, C. M. Tissue cytokine patterns distinguish variants of rheumatoid synovitis. Am. J. Pathol. 151, 1311–1319 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Manzo, A. et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur. J. Immunol. 35, 1347–1359 (2005).

    CAS  PubMed  Google Scholar 

  7. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    PubMed  Google Scholar 

  8. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    CAS  PubMed  Google Scholar 

  9. Bugatti, S. et al. Involvement of subchondral bone marrow in rheumatoid arthritis: lymphoid neogenesis and in situ relationship to subchondral bone marrow osteoclast recruitment. Arthritis Rheum. 52, 3448–3459 (2005).

    CAS  PubMed  Google Scholar 

  10. Rangel-Moreno, J. et al. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest. 116, 3183–3194 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    CAS  PubMed  Google Scholar 

  12. Thurlings, R. M. et al. Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum. 58, 1582–1589 (2008).

    PubMed  Google Scholar 

  13. Vos, K. et al. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum. 56, 772–778 (2007).

    CAS  PubMed  Google Scholar 

  14. Yanni, G., Whelan, A., Feighery, C. & Bresnihan, B. Analysis of cell populations in rheumatoid arthritis synovial tissues. Semin. Arthritis Rheum. 21, 393–399 (1992).

    CAS  PubMed  Google Scholar 

  15. Manzo, A., Bombardieri, M., Humby, F. & Pitzalis, C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev. 233, 267–285 (2010).

    CAS  PubMed  Google Scholar 

  16. Aziz, K. E., McCluskey, P. J. & Wakefield, D. Characterisation of follicular dendritic cells in labial salivary glands of patients with primary Sjogren syndrome: comparison with tonsillar lymphoid follicles. Ann. Rheum. Dis. 56, 140–143 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Barone, F. et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. Arthritis Rheum. 52, 1773–1784 (2005).

    CAS  PubMed  Google Scholar 

  18. Croia, C. et al. Implication of Epstein–Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren's syndrome. Arthritis Rheumatol. 66, 2545–2557 (2014).

    CAS  PubMed  Google Scholar 

  19. Jonsson, M. V., Skarstein, K., Jonsson, R. & Brun, J. G. Serological implications of germinal center-like structures in primary Sjögren's syndrome. J. Rheumatol. 34, 2044–2049 (2007).

    PubMed  Google Scholar 

  20. Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's syndrome. J. Clin. Invest. 102, 938–946 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Theander, E. et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren's syndrome. Ann. Rheum. Dis. 70, 1363–1368 (2011).

    PubMed  Google Scholar 

  22. Pijpe, J. et al. Parotid gland biopsy compared with labial biopsy in the diagnosis of patients with primary Sjogren's syndrome. Rheumatology (Oxford) 46, 335–341 (2007).

    CAS  Google Scholar 

  23. Bombardieri, M. et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren's syndrome. J. Immunol. 179, 4929–4938 (2007).

    CAS  PubMed  Google Scholar 

  24. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    CAS  PubMed  Google Scholar 

  25. Shen, Y. et al. Association of intrarenal B-cell infiltrates with clinical outcome in lupus nephritis: a study of 192 cases. Clin. Dev. Immunol. 2012, 967584 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. Neusser, M. A. et al. Intrarenal production of B-cell survival factors in human lupus nephritis. Mod. Pathol. 24, 98–107 (2011).

    CAS  PubMed  Google Scholar 

  27. Liu, Z. et al. Interferon-α accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis Rheum. 63, 219–229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathian, A., Gallegos, M., Pascual, V., Banchereau, J. & Koutouzov, S. Interferon-α induces unabated production of short-lived plasma cells in pre-autoimmune lupus-prone (NZBxNZW)F1 mice but not in BALB/c mice. Eur. J. Immunol. 41, 863–872 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahevas, M. et al. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. J. Clin. Invest. 123, 432–442 (2013).

    CAS  PubMed  Google Scholar 

  30. Domeier, P. P. et al. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213, 715–732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jackson, S. W. et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 213, 733–750 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann. Neurol. 16, 193–208 (1984).

    CAS  PubMed  Google Scholar 

  33. De Bleecker, J. L., Engel, A. G. & Butcher, E. C. Peripheral lymphoid tissue-like adhesion molecule expression in nodular infiltrates in inflammatory myopathies. Neuromuscul. Disord. 6, 255–260 (1996).

    CAS  PubMed  Google Scholar 

  34. Lopez De Padilla, C. M., Vallejo, A. N., Lacomis, D., McNallan, K. & Reed, A. M. Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum. 60, 1160–1172 (2009).

    PubMed  Google Scholar 

  35. Salajegheh, M. et al. Permissive environment for B-cell maturation in myositis muscle in the absence of B-cell follicles. Muscle Nerve 42, 576–583 (2010).

    PubMed  Google Scholar 

  36. Bradshaw, E. M. et al. A local antigen-driven humoral response is present in the inflammatory myopathies. J. Immunol. 178, 547–556 (2007).

    CAS  PubMed  Google Scholar 

  37. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol. 7, 344–353 (2006).

    CAS  PubMed  Google Scholar 

  38. Jones, G. W. et al. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J. Exp. Med. 212, 1793–1802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mebius, R. E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    CAS  PubMed  Google Scholar 

  40. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    CAS  PubMed  Google Scholar 

  41. Randall, T. D. & Mebius, R. E. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 7, 455–466 (2014).

    CAS  PubMed  Google Scholar 

  42. Browning, J. L. et al. Lymphotoxin-β receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23, 539–550 (2005).

    CAS  PubMed  Google Scholar 

  43. Bugatti, S. et al. High expression levels of the B cell chemoattractant CXCL13 in rheumatoid synovium are a marker of severe disease. Rheumatology (Oxford) 53, 1886–1895 (2014).

    CAS  Google Scholar 

  44. Salomonsson, S. et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren's syndrome. Arthritis Rheum. 48, 3187–3201 (2003).

    CAS  PubMed  Google Scholar 

  45. Weyand, C. M. & Goronzy, J. J. Ectopic germinal center formation in rheumatoid synovitis. Ann. NY Acad. Sci. 987, 140–149 (2003).

    CAS  PubMed  Google Scholar 

  46. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  47. Manzo, A. et al. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am. J. Pathol. 171, 1549–1562 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Barone, F. et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjögren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J. Immunol. 180, 5130–5140 (2008).

    CAS  PubMed  Google Scholar 

  49. Carlsen, H. S., Baekkevold, E. S., Morton, H. C., Haraldsen, G. & Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104, 3021–3027 (2004).

    CAS  PubMed  Google Scholar 

  50. Kobayashi, S. et al. A distinct human CD4+ T cell subset that secretes CXCL13 in rheumatoid synovium. Arthritis Rheum. 65, 3063–3072 (2013).

    CAS  PubMed  Google Scholar 

  51. Manzo, A. et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum. 58, 3377–3387 (2008).

    CAS  PubMed  Google Scholar 

  52. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Amft, N. et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjogren's syndrome. Arthritis Rheum. 44, 2633–2641 (2001).

    CAS  PubMed  Google Scholar 

  54. Xanthou, G. et al. “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjogren's syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum. 44, 408–418 (2001).

    CAS  PubMed  Google Scholar 

  55. Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    CAS  PubMed  Google Scholar 

  58. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    CAS  PubMed  Google Scholar 

  59. Canete, J. D. et al. Ectopic lymphoid neogenesis is strongly associated with activation of the IL-23 pathway in rheumatoid synovitis. Arthritis Res. Ther. 17, 173 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barone, F. et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc. Natl Acad. Sci. USA 112, 11024–11029 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bombardieri, M. et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J. Immunol. 189, 3767–3776 (2012).

    CAS  PubMed  Google Scholar 

  63. Ciccia, F. et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren's syndrome. Ann. Rheum. Dis. 71, 295–301 (2012).

    CAS  PubMed  Google Scholar 

  64. Slight, S. R. et al. CXCR5+ T helper cells mediate protective immunity against tuberculosis. J. Clin. Invest. 123, 712–726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Karnell, J. L. & Ettinger, R. The interplay of IL-21 and BAFF in the formation and maintenance of human B cell memory. Front. Immunol. 3, 2 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Liu, D. et al. T–B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015).

    CAS  PubMed  Google Scholar 

  69. Jungel, A. et al. Expression of interleukin-21 receptor, but not interleukin-21, in synovial fibroblasts and synovial macrophages of patients with rheumatoid arthritis. Arthritis Rheum. 50, 1468–1476 (2004).

    PubMed  Google Scholar 

  70. Kwok, S. K. et al. Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum. 64, 740–751 (2012).

    CAS  PubMed  Google Scholar 

  71. Young, D. A. et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 56, 1152–1163 (2007).

    CAS  PubMed  Google Scholar 

  72. Liu, H., Liu, G., Gong, L., Zhang, Y. & Jiang, G. Local suppression of IL-21 in submandibular glands retards the development of Sjogren's syndrome in non-obese diabetic mice. J. Oral Pathol. Med. 41, 728–735 (2012).

    CAS  PubMed  Google Scholar 

  73. Gong, Y. Z. et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjögren's syndrome. J. Autoimmun. 51, 57–66 (2014).

    CAS  PubMed  Google Scholar 

  74. Stumhofer, J. S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    CAS  PubMed  Google Scholar 

  75. Lee, B. H., Carcamo, W. C., Chiorini, J. A., Peck, A. B. & Nguyen, C. Q. Gene therapy using IL-27 ameliorates Sjögren's syndrome-like autoimmune exocrinopathy. Arthritis Res. Ther. 14, R172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Batten, M. et al. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J. Exp. Med. 207, 2895–2906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sage, P. T. & Sharpe, A. H. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 36, 410–418 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Corsiero, E. et al. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann. Rheum. Dis. 75, 1866–1875 (2015).

    PubMed  Google Scholar 

  79. Scheel, T., Gursche, A., Zacher, J., Haupl, T. & Berek, C. V-Region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum. 63, 63–72 (2011).

    CAS  PubMed  Google Scholar 

  80. Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).

    CAS  PubMed  Google Scholar 

  81. Le Pottier, L. et al. Ectopic germinal centers are rare in Sjögren's syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 182, 3540–3547 (2009).

    CAS  PubMed  Google Scholar 

  82. Canete, J. D. et al. Ectopic lymphoid neogenesis in psoriatic arthritis. Ann. Rheum. Dis. 66, 720–726 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cantaert, T. et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181, 785–794 (2008).

    CAS  PubMed  Google Scholar 

  84. Canete, J. D. et al. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor α therapy in rheumatoid arthritis. Ann. Rheum. Dis. 68, 751–756 (2009).

    CAS  PubMed  Google Scholar 

  85. Rosengren, S. et al. Elevated autoantibody content in rheumatoid arthritis synovia with lymphoid aggregates and the effect of rituximab. Arthritis Res. Ther. 10, R105 (2008).

    PubMed  PubMed Central  Google Scholar 

  86. Amara, K. et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Risselada, A. P., Looije, M. F., Kruize, A. A., Bijlsma, J. W. & van Roon, J. A. The role of ectopic germinal centers in the immunopathology of primary Sjögren's syndrome: a systematic review. Semin. Arthritis Rheum. 42, 368–376 (2013).

    CAS  PubMed  Google Scholar 

  88. Croia, C. et al. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann. Rheum. Dis. 72, 1559–1568 (2013).

    CAS  PubMed  Google Scholar 

  89. Doorenspleet, M. E. et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann. Rheum. Dis. 73, 756–762 (2014).

    CAS  PubMed  Google Scholar 

  90. Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

    CAS  PubMed  Google Scholar 

  91. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    CAS  PubMed  Google Scholar 

  92. Szyszko, E. A. et al. Salivary glands of primary Sjögren's syndrome patients express factors vital for plasma cell survival. Arthritis Res. Ther. 13, R2 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. Kim, K. W. et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L–CD40 interaction. Arthritis Rheum. 56, 1076–1086 (2007).

    CAS  PubMed  Google Scholar 

  94. Noss, E. H., Nguyen, H. N., Chang, S. K., Watts, G. F. & Brenner, M. B. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types. Proc. Natl Acad. Sci. USA 112, 14948–14953 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, X. et al. Increased expression of activation-induced cytidine deaminase is associated with anti-CCP and rheumatoid factor in rheumatoid arthritis. Scand. J. Immunol. 70, 309–316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lanfant-Weybel, K. et al. Synovium CD20 expression is a potential new predictor of bone erosion progression in very-early arthritis treated by sequential DMARDs monotherapy — a pilot study from the VErA cohort. Joint Bone Spine 79, 574–580 (2012).

    CAS  PubMed  Google Scholar 

  97. van de Sande, M. G. et al. Presence of lymphocyte aggregates in the synovium of patients with early arthritis in relationship to diagnosis and outcome: is it a constant feature over time? Ann. Rheum. Dis. 70, 700–703 (2011).

    PubMed  Google Scholar 

  98. Royer, B. et al. Lymphomas in patients with Sjögren's syndrome are marginal zone B-cell neoplasms, arise in diverse extranodal and nodal sites, and are not associated with viruses. Blood 90, 766–775 (1997).

    CAS  PubMed  Google Scholar 

  99. Bende, R. J. et al. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J. Exp. Med. 201, 1229–1241 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin, T. et al. Salivary gland lymphomas in patients with Sjogren's syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum. 43, 908–916 (2000).

    CAS  PubMed  Google Scholar 

  101. Gasparotto, D. et al. Extrasalivary lymphoma development in Sjögren's syndrome: clonal evolution from parotid gland lymphoproliferation and role of local triggering. Arthritis Rheum. 48, 3181–3186 (2003).

    PubMed  Google Scholar 

  102. Espeli, M. et al. Local renal autoantibody production in lupus nephritis. J. Am. Soc. Nephrol. 22, 296–305 (2011).

    PubMed  PubMed Central  Google Scholar 

  103. Klaasen, R. et al. The relationship between synovial lymphocyte aggregates and the clinical response to infliximab in rheumatoid arthritis: a prospective study. Arthritis Rheum. 60, 3217–3224 (2009).

    CAS  PubMed  Google Scholar 

  104. Kavanaugh, A. et al. Assessment of rituximab's immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    CAS  PubMed  Google Scholar 

  105. Delli, K. et al. Towards personalised treatment in primary Sjögren's syndrome: baseline parotid histopathology predicts responsiveness to rituximab treatment. Ann. Rheum. Dis. 75, 1933–1938 (2016).

    CAS  PubMed  Google Scholar 

  106. Hamza, N. et al. Persistence of immunoglobulin-producing cells in parotid salivary glands of patients with primary Sjögren's syndrome after B cell depletion therapy. Ann. Rheum. Dis. 71, 1881–1887 (2012).

    CAS  PubMed  Google Scholar 

  107. Pijpe, J. et al. Clinical and histologic evidence of salivary gland restoration supports the efficacy of rituximab treatment in Sjögren's syndrome. Arthritis Rheum. 60, 3251–3256 (2009).

    CAS  PubMed  Google Scholar 

  108. Quartuccio, L. et al. Resistance to rituximab therapy and local BAFF overexpression in Sjögren's syndrome-related myoepithelial sialadenitis and low-grade parotid B-cell lymphoma. Open Rheumatol. J. 2, 38–43 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Teng, Y. K., Levarht, E. W., Toes, R. E., Huizinga, T. W. & van Laar, J. M. Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann. Rheum. Dis. 68, 1011–1016 (2009).

    CAS  PubMed  Google Scholar 

  110. Rosengren, S., Wei, N., Kalunian, K. C., Kavanaugh, A. & Boyle, D. L. CXCL13: a novel biomarker of B-cell return following rituximab treatment and synovitis in patients with rheumatoid arthritis. Rheumatology (Oxford) 50, 603–610 (2011).

    CAS  Google Scholar 

  111. Buch, M. H. et al. The value of synovial cytokine expression in predicting the clinical response to TNF antagonist therapy (infliximab). Rheumatology (Oxford) 47, 1469–1475 (2008).

    CAS  Google Scholar 

  112. Das, S. et al. Abatacept or tocilizumab after rituximab in rheumatoid arthritis? An exploratory study suggests non-response to rituximab is associated with persistently high IL-6 and better clinical response to IL-6 blocking therapy. Ann. Rheum. Dis. 73, 909–912 (2014).

    CAS  PubMed  Google Scholar 

  113. Adler, S. et al. Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary Sjögren's syndrome: a pilot study. Arthritis Care Res. (Hoboken) 65, 1862–1868 (2013).

    CAS  Google Scholar 

  114. Fava, R. A. et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J. Immunol. 171, 115–126 (2003).

    CAS  PubMed  Google Scholar 

  115. Gatumu, M. K. et al. Blockade of lymphotoxin-β receptor signaling reduces aspects of Sjögren's syndrome in salivary glands of non-obese diabetic mice. Arthritis Res. Ther. 11, R24 (2009).

    PubMed  PubMed Central  Google Scholar 

  116. St.Clair, E. W. et al. The clinical efficacy and safety of baminercept, a lymphotoxin-β receptor fusion protein, in primary Sjögren's syndrome: results from a randomized, double-blind, placebo-controlled phase II trial [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 3203 (2015).

    Google Scholar 

  117. Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182, 1421–1428 (2009).

    CAS  PubMed  Google Scholar 

  118. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    CAS  PubMed  Google Scholar 

  119. Ferrari, M., Onuoha, S. C. & Pitzalis, C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 11, 328–337 (2015).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B. and M.L. researched data for the article. All authors made a substantial contribution to discussion of the content, and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Costantino Pitzalis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat Rev Rheumatol 13, 141–154 (2017). https://doi.org/10.1038/nrrheum.2016.217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing