Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Preimplantation genetic diagnosis for inherited neurological disorders

Abstract

Preimplantation genetic diagnosis (PGD) is an option for couples at risk of having offspring with an inherited debilitating or fatal neurological disorder who wish to conceive a healthy child. PGD has been carried out for conditions with various modes of inheritance, including spinal muscular atrophy, Huntington disease, fragile X syndrome, and chromosomal or mitochondrial disorders, and for susceptibility genes for cancers with nervous system involvement. Most couples at risk of transmitting a genetic mutation would opt for PGD over prenatal testing and possible termination of a pregnancy. The aim of this Perspectives article is to assist neurologists in counselling and treating patients who wish to explore the option of PGD to enable conception of an unaffected child. PGD can be accomplished for most disorders in which the genetic basis is known, and we argue that it is time for clinicians and neurological societies to consider the evidence and to formulate guidelines for the responsible integration of PGD into modern preventative neurology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro fertilization with PGD.
Figure 2: Hypothetical pedigree of a family with an autosomal dominant neurological disorder, such as Huntington disease, myotonic dystrophy, or familial Alzheimer disease.

Similar content being viewed by others

References

  1. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    CAS  PubMed  Google Scholar 

  2. Pfeffer, G. et al. New treatments for mitochondrial disease—no time to drop our standards. Nat. Rev. Neurol. 9, 474–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bechtel, K. & Geschwind, M. D. Ethics in prion disease. Prog. Neurobiol. 110, 29–44 (2013).

    PubMed  Google Scholar 

  4. Simonato, M. et al. Progress in gene therapy for neurological disorders. Nat. Rev. Neurol. 9, 277–291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Offit, K., Sagi, M. & Hurley, K. Preimplantation genetic diagnosis for cancer syndromes: a new challenge for preventive medicine. JAMA 296, 2727–2730 (2006).

    CAS  PubMed  Google Scholar 

  6. Soini, S. et al. The interface between assisted reproductive technologies and genetics: technical, social, ethical and legal issues. Eur. J. Hum. Genet. 14, 588–645 (2006).

    PubMed  Google Scholar 

  7. Tur-Kaspa, I., Aljadeff, G., Rechitsky, S., Grotjan, H. E. & Verlinsky, Y. PGD for all cystic fibrosis carrier couples: novel strategy for preventive medicine and cost analysis. Reprod. Biomed. Online 21, 186–195 (2010).

    CAS  PubMed  Google Scholar 

  8. Handyside, A. H., Kontogianni, E. H., Hardy, K. & Winston, R. M. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770 (1990).

    CAS  PubMed  Google Scholar 

  9. Verlinsky, Y. et al. Analysis of the first polar body: preconception genetic diagnosis. Hum. Reprod. 5, 826–829 (1990).

    CAS  PubMed  Google Scholar 

  10. Platteau, P. et al. Preimplantation genetic diagnosis for fragile Xa syndrome: difficult but not impossible. Hum. Reprod. 17, 2807–2812 (2002).

    PubMed  Google Scholar 

  11. Kuliev, A. & Rechitsky, S. Polar body-based preimplantation genetic diagnosis for Mendelian disorders. Mol. Hum. Reprod. 17, 275–285 (2011).

    CAS  PubMed  Google Scholar 

  12. Handyside, A. H. Preimplantation genetic diagnosis after 20 years. Reprod. Biomed. Online 21, 280–282 (2010).

    PubMed  Google Scholar 

  13. Harper, J. C. & Sengupta, S. B. Preimplantation genetic diagnosis: state of the art 2011. Hum. Genet. 131, 175–186 (2012).

    PubMed  Google Scholar 

  14. Tur-Kaspa, I. Clinical management of in vitro fertilization with preimplantation genetic diagnosis. Semin. Reprod. Med. 30, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  15. Harper, J. C. et al. The ESHRE PGD Consortium: 10 years of data collection. Hum. Reprod. Update 18, 234–247 (2012).

    CAS  PubMed  Google Scholar 

  16. Verlinsky, Y., Rechitsky, S., Verlinsky, O., Masciangelo, C., Lederer, K. & Kuliev, A. Preimplantation diagnosis for early-onset Alzheimer disease caused by V717L mutation. JAMA 287, 1018–1021 (2002).

    CAS  PubMed  Google Scholar 

  17. Uflacker, A., Doraiswamy, M., Rechitsky, S., See, T., Geschwind, M. & Tur-Kaspa, I. Preimplanation genetic diagnosis (PGD) for genetic prion disorder due to F198S mutation in the PRNP gene. JAMA Neurol. http://dx.doi.org/10.1001/jamaneurol.2013.5884.

  18. Altarescu, G. et al. Preimplantation genetic diagnosis (PGD) for nonsyndromic deafness by polar body and blastomere biopsy. J. Assist. Reprod. Genet. 26, 391–397 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Practice Committee of Society for Assisted Reproductive Technology & Practice Committee of American Society for Reproductive Medicine. Preimplantation genetic testing: a Practice Committee opinion. Fertil. Steril. 90, S136–S143 (2008).

  20. Ethics Committee of American Society for Reproductive Medicine. Use of preimplantation genetic diagnosis for serious adult onset conditions: a committee opinion. Fertil. Steril. 100, 54–57 (2013).

  21. Preimplantation Genetic Diagnosis International Society (PGDIS). Guidelines for good practice in PGD: programme requirements and laboratory quality assurance. Reprod. Biomed. Online 16, 134–147 (2008).

  22. Audibert, F. et al. Preimplantation genetic testing. J. Obstet. Gynaecol. Can. 31, 761–775 (2009).

    PubMed  Google Scholar 

  23. Harton, G. et al. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum. Reprod. 26, 14–24 (2011).

    CAS  PubMed  Google Scholar 

  24. de Die-Smulders, C. E., de Wert, G. M., Liebaers, I., Tibben, A. & Evers-Kiebooms, G. Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections. Hum. Reprod. Update 19, 304–315 (2013).

    CAS  PubMed  Google Scholar 

  25. Hellebrekers, D. M. et al. PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Hum. Reprod. Update 18, 341–349 (2012).

    CAS  PubMed  Google Scholar 

  26. Sallevelt, S. C. et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J. Med. Genet. 50, 125–132 (2013).

    CAS  PubMed  Google Scholar 

  27. Klitzman, R. et al. Views of internists towards uses of PGD. Reprod. Biomed. Online 26, 142–147 (2013).

    PubMed  Google Scholar 

  28. Brandt, A. C. et al. Knowledge, attitudes, and clinical experience of physicians regarding preimplantation genetic diagnosis for hereditary cancer predisposition syndromes. Fam. Cancer 9, 479–487 (2010).

    PubMed  Google Scholar 

  29. Twisk, M. et al. Preimplantation genetic screening as an alternative to prenatal testing for Down syndrome: preferences of women undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. Fertil. Steril. 88, 804–810 (2007).

    PubMed  Google Scholar 

  30. Musters, A. M. et al. Perspectives of couples with high risk of transmitting genetic disorders. Fertil. Steril. 94, 1239–1243 (2010).

    PubMed  Google Scholar 

  31. Savulescu, J. & Kahane, G. The moral obligation to create children with the best chance of the best life. Bioethics 23, 274–290 (2009).

    PubMed  Google Scholar 

  32. Amagwula, T. et al. Preimplantation genetic diagnosis: a systematic review of litigation in the face of new technology. Fertil. Steril. 98, 1277–1282 (2012).

    PubMed  Google Scholar 

  33. Kuliev, A. et al. Pre-embryonic diagnosis for Sandhoff disease. Reprod. Biomed. Online 12, 328–333 (2006).

    CAS  PubMed  Google Scholar 

  34. Altarescu, G. et al. Successful polar body-based preimplantation genetic diagnosis for achondroplasia. Reprod. Biomed. Online 16, 276–282 (2008).

    CAS  PubMed  Google Scholar 

  35. Cieslak-Janzen, J. et al. Multiple micromanipulations for preimplantation genetic diagnosis do not affect embryo development to the blastocyst stage. Fertil. Steril. 85, 1826–1829 (2006).

    PubMed  Google Scholar 

  36. Grace, J. et al. Three hundred and thirty cycles of preimplantation genetic diagnosis for serious genetic disease: clinical considerations affecting outcome. BJOG 113, 1393–1401 (2006).

    CAS  PubMed  Google Scholar 

  37. Donoso, P. et al. Single embryo transfer in preimplantation genetic diagnosis cycles for women <36 years does not reduce delivery rate. Hum. Reprod. 22, 1021–1025 (2007).

    CAS  PubMed  Google Scholar 

  38. Munne, S. et al. Substandard application of preimplantation genetic screening may interfere with its clinical success. Fertil. Steril. 88, 781–784 (2007).

    PubMed  Google Scholar 

  39. Grifo, J. et al. Ten-year experience with preimplantation genetic diagnosis (PGD) at the New York University School of Medicine Fertility Centre. Fertil. Steril. 88, 978–981 (2007).

    CAS  PubMed  Google Scholar 

  40. Verpoest, W. et al. Cumulative reproductive outcome after preimplantation genetic diagnosis: a report on 1498 couples. Hum. Reprod. 24, 2951–2959 (2009).

    CAS  PubMed  Google Scholar 

  41. Schoolcraft, W. B. et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil. Steril. 94, 1700–1706 (2010).

    PubMed  Google Scholar 

  42. Scott, R. T. Jr, Upham, K. M., Forman, E. J., Zhao, T. & Treff, N. R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil. Steril. 100, 624–630 (2013).

    PubMed  Google Scholar 

  43. de Boer, K. A., Catt, J. W., Jansen, R. P., Leigh, D. & McArthur, S. Moving to blastocyst biopsy for preimplantation genetic diagnosis and single embryo transfer at Sydney IVF. Fertil. Steril. 82, 295–298 (2004).

    PubMed  Google Scholar 

  44. El-Toukhy, T. et al. Reduction of the multiple pregnancy rate in a preimplantation genetic diagnosis programme after introduction of single blastocyst transfer and cryopreservation of blastocysts biopsied on day 3. Hum. Reprod. 24, 2642–2648 (2009).

    PubMed  Google Scholar 

  45. Forman, E. J. et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil. Steril. 100, 100–107. e1 (2013).

    PubMed  Google Scholar 

  46. Goossens, V. et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum. Reprod. 23, 481–492 (2008).

    PubMed  Google Scholar 

  47. Sunkara, S. K. et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400,135 treatment cycles. Hum. Reprod. 26, 1768–1774 (2011).

    PubMed  Google Scholar 

  48. Yang, Z. et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol. Cytogenet. 5, 24 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. Forman, E. J. et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer. Fertil. Steril. 100, 718–724 (2013).

    PubMed  Google Scholar 

  50. Rechitsky, S., Verlinsky, O. & Kuliev, A. PGD for cystic fibrosis patients and couples at risk of an additional genetic disorder combined with 24-chromosome aneuploidy testing. Reprod. Biomed. Online 26, 420–430 (2013).

    PubMed  Google Scholar 

  51. Strom, C. M. et al. Neonatal outcome of preimplantation genetic diagnosis by polar body removal: the first 109 infants. Paediatrics 106, 650–653 (2000).

    CAS  Google Scholar 

  52. Simpson, J. L. Children born after preimplantation genetic diagnosis show no increase in congenital anomalies. Hum. Reprod. 25, 6–8 (2010).

    PubMed  Google Scholar 

  53. Liebaers, I. et al. Report on a consecutive series of 581 children born after blastomere biopsy for preimplantation genetic diagnosis. Hum. Reprod. 25, 275–282 (2010).

    CAS  PubMed  Google Scholar 

  54. Schendelaar, P. et al. The effect of preimplantation genetic screening on neurological, cognitive and behavioural development in 4-year-old children: follow-up of a RCT. Hum. Reprod. 28, 1508–1518 (2013).

    CAS  PubMed  Google Scholar 

  55. Coppola, G. & Geschwind, D. H. Technology Insight: querying the genome with microarrays—progress and hope for neurological disease. Nat. Clin. Pract. Neurol. 2, 147–158 (2006).

    CAS  PubMed  Google Scholar 

  56. Rechitsky, S. et al. First systematic experience of preimplantation genetic diagnosis for de-novo mutations. Reprod. Biomed. Online 22, 350–361 (2011).

    PubMed  Google Scholar 

  57. Foo, J. N., Liu, J. J. & Tan, E. K. Whole-genome and whole-exome sequencing in neurological diseases. Nat. Rev. Neurol. 8, 508–517 (2012).

    CAS  PubMed  Google Scholar 

  58. Treff, N. R. et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil. Steril. 99, 1377–1384. e6 (2013).

    CAS  PubMed  Google Scholar 

  59. Treff, N. R. & Scott, R. T. Jr. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy. Fertil. Steril. 99, 1049–1053 (2013).

    CAS  PubMed  Google Scholar 

  60. Malek, J. & Daar, J. The case for a parental duty to use preimplantation genetic diagnosis for medical benefit. Am. J. Bioeth. 12, 3–11 (2012).

    PubMed  Google Scholar 

  61. [No authors listed] Ethical issues related to prenatal genetic testing. The Council on Ethical and Judicial Affairs, American Medical Association. Arch. Fam. Med. 3, 633–642 (1994).

  62. Karatas, J. C. et al. Psychological impact of preimplantation genetic diagnosis: a review of the literature. Reprod. Biomed. Online 20, 83–91 (2010).

    CAS  PubMed  Google Scholar 

  63. Tung, N. Management of women with BRCA mutations: a 41-year-old woman with a BRCA mutation and a recent history of breast cancer. JAMA 305, 2211–2220 (2011).

    CAS  PubMed  Google Scholar 

  64. Rechitsky, S., Kuliev, A., Tur-Kaspa, I., Morris, R. & Verlinsky, Y. Preimplantation genetic diagnosis with HLA matching. Reprod. Biomed. Online 9, 210–221 (2004).

    CAS  PubMed  Google Scholar 

  65. Samuel, G. N. et al. Establishing the role of pre-implantation genetic diagnosis with human leucocyte antigen typing: what place do “saviour siblings” have in paediatric transplantation? Arch. Dis. Child. 94, 317–320 (2009).

    CAS  PubMed  Google Scholar 

  66. Kahraman, S., Beyazyurek, C. & Ekmekci, C. G. Seven years of experience of preimplantation HLA typing: a clinical overview of 327 cycles. Reprod. Biomed. Online 23, 363–371 (2011).

    CAS  PubMed  Google Scholar 

  67. Hens, K. et al. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges. Hum. Reprod. Update 19, 366–375 (2013).

    PubMed  Google Scholar 

  68. Kuliev, A. & Verlinsky, Y. Preimplantation genetic diagnosis: technological advances to improve accuracy and range of applications. Reprod. Biomed. Online 16, 532–538 (2008).

    PubMed  Google Scholar 

  69. Dreesen, J. et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic disease: a collaborative ESHRE PGD consortium study. Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2013.277.

  70. Rimm, A. A., Katayama, A. C. & Katayama, K. P. A meta-analysis of the impact of IVF and ICSI on major malformations after adjusting for the effect of subfertility. J. Assist Reprod. Genet. 28, 699–705 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Hershberger, P. E. et al. The decision-making process of genetically at-risk couples considering preimplantation genetic diagnosis: initial findings from a grounded theory study. Soc. Sci. Med. 74, 1536–1543 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Davis, L. B., Champion, S. J., Fair, S. O., Baker, V. L. & Garber, A. M. A cost-benefit analysis of preimplantation genetic diagnosis for carrier couples of cystic fibrosis. Fertil. Steril. 93, 1793–1804 (2010).

    PubMed  Google Scholar 

  73. US Burden of Disease Collaborators. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 310, 591–608 (2013).

    CAS  PubMed  Google Scholar 

  74. Wang, C. W. & Hui, E. C. Ethical, legal and social implications of prenatal and preimplantation genetic testing for cancer susceptibility. Reprod. Biomed. Online 19 (Suppl. 2), 23–33 (2009).

    CAS  PubMed  Google Scholar 

  75. Bredenoord, A. et al. Preimplantation genetic diagnosis for mitochondrial DNA disorders: ethical guidance for clinical practice. Eur. J. Hum. Genet. 17, 1550–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Treff, N. R. et al. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil. Steril. 98, 1236–1240 (2012).

    CAS  PubMed  Google Scholar 

  77. Robins Wahlin, T. B. To know or not to know: a review of behaviour and suicidal ideation in preclinical Huntington's disease. Patient Educ. Couns. 65, 279–287 (2007).

    PubMed  Google Scholar 

  78. Rechitsky, S. & Kuliev, A. in Practical Preimplantation Genetic Diagnosis 2nd edn Vol. 1 Ch. 3 (ed. Kuliev, A.) 45–170 (Springer, 2012).

    Google Scholar 

  79. Decruyenaere, M. et al. The complexity of reproductive decision-making in asymptomatic carriers of the Huntington mutation. Eur. J. Hum. Genet. 15, 453–462 (2007).

    PubMed  Google Scholar 

  80. Schulman, J. D., Black, S. H., Handyside, A. & Nance, W. E. Preimplantation genetic testing for Huntington disease and certain other dominantly inherited disorders. Clin. Genet. 49, 57–58 (1996).

    CAS  PubMed  Google Scholar 

  81. Braude, P. R., De Wert, G. M., Evers-Kiebooms, G., Pettigrew, R. A. & Geraedts, J. P. Non-disclosure preimplantation genetic diagnosis for Huntington's disease: practical and ethical dilemmas. Prenat. Diagn. 18, 1422–1426 (1998).

    CAS  PubMed  Google Scholar 

  82. Sermon, K. et al. Preimplantation genetic diagnosis for Huntington's disease with exclusion testing. Eur. J. Hum. Genet. 10, 591–598 (2002).

    CAS  PubMed  Google Scholar 

  83. Anton, J. PGD with exclusion testing and non-disclosure. Human Fertilisation and Embryology Authority Ethics & Law Advisory Committee [online], (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the unique expertise of our co-workers (clinical staff, embryologists and molecular geneticists) involved in in vitro fertilization with preimplantation genetic diagnosis at the Institute for Human Reproduction (IHR) and Reproductive Genetics Institute (RGI), and our co-workers at the Neurocognitive Disorders Program in the Department of Psychiatry at Duke Medicine for their unique patients' care. The authors thank Adi Tur-Kaspa for excellent editorial assistance, and Leeron Tur-Kaspa for the graphic design of Figure 1.

Author information

Authors and Affiliations

Authors

Contributions

The abstract outline and references for the proposal were prepared by P.M.D and edited by I.T.-K. I.T.-K. wrote the first draft of the article and I.T.-K. and P.M.D. contributed equally to critical revisions. All authors researched the data and references for the article, and undertook review and/or editing of the manuscript before submission. I.T.-K takes full responsibility for the originality of the manuscript and data accuracy and analysis.

Corresponding authors

Correspondence to Ilan Tur-Kaspa or P. Murali Doraiswamy.

Ethics declarations

Competing interests

I.T-K. is the medical director and owner of the Institute for Human Reproduction in Chicago, Illinois, USA, a private fertility centre that offers advanced infertility and in vitro fertilization treatments, with or without preimplantation genetic diagnosis. P.M.D. has received research grants and/or consultation or speaker fees from Abbvie, Accera, Alzheimer's Drug Discovery Foundation, Baxter, Cognoptix, Danone, Eli Lilly, Envivo, Genomind, Grifols, Janssen, Lundbeck, Neurocog Trials, Neuronetrix, Piramal Healthcare, Shire, Sonexa Therapeutics, Takeda Pharmaceutical Company, and Targacept for other projects. He is a shareholder in Sonexa, AdverseEvents, Maxwell Health and Clarimedix the products of which are not discussed here. R.J. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tur-Kaspa, I., Jeelani, R. & Doraiswamy, P. Preimplantation genetic diagnosis for inherited neurological disorders. Nat Rev Neurol 10, 417–424 (2014). https://doi.org/10.1038/nrneurol.2014.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing