Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pre-eclampsia part 2: prediction, prevention and management

Key Points

  • Combinations of biomarkers perform better than single biomarkers for predicting pre-eclampsia, but require external validation before they can be used routinely

  • Potentially effective interventions to prevent pre-eclampsia in patients at risk include early administration of low-dose aspirin or L-arginine in combination with oral antioxidants (vitamins C and E)

  • Maternal plasma levels of angiogenic and antiangiogenic factors identify most patients who will develop early pre-eclampsia, correlate with disease severity and have prognostic value for maternal and/or perinatal complications

  • Management of pre-eclampsia includes control of hypertension, prevention of seizures and timely delivery; steroids are administered to enhance fetal lung maturity if induction of labour before 34 weeks is contemplated

  • In pre-eclampsia at ≥37 weeks of gestation, delivery effectively optimizes pregnancy outcomes; for preterm gestations, the risk of continued pregnancy must be balanced against that of premature birth

  • Women with pre-eclampsia are at increased risk of developing cardiovascular disease, including chronic hypertension, stroke, coronary artery disease, diabetes and end-stage renal disease later in life

Abstract

An antiangiogenic state might constitute a terminal pathway for the multiple aetiologies of pre-eclampsia, especially those resulting from placental abnormalities. The levels of angiogenic and antiangiogenic proteins in maternal blood change prior to a diagnosis of pre-eclampsia, correlate with disease severity and have prognostic value in identifying women who will develop maternal and/or perinatal complications. Potential interventions exist to ameliorate the imbalance of angiogenesis and, hence, might provide opportunities to improve maternal and/or perinatal outcomes in pre-eclampsia. Current strategies for managing pre-eclampsia consist of controlling hypertension, preventing seizures and timely delivery of the fetus. Prediction of pre-eclampsia in the first trimester is of great interest, as early administration of aspirin might reduce the risk of pre-eclampsia, albeit modestly. Combinations of biomarkers typically predict pre-eclampsia better than single biomarkers; however, the encouraging initial results of biomarker studies require external validation in other populations before they can be used to facilitate intervention in patients identified as at increased risk. Angiogenic and antiangiogenic factors might also be useful in triage of symptomatic patients with suspected pre-eclampsia, differentiating pre-eclampsia from exacerbations of pre-existing medical conditions and performing risk assessment in asymptomatic women. This Review article discusses the performance of predictive and prognostic biomarkers for pre-eclampsia, current strategies for preventing and managing the condition and its long-term consequences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uterine artery Doppler velocimetry findings in the second trimester of pregnancy.
Figure 2: Management of pre-eclampsia.

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

References

  1. Chaiworapongsa, T., Chaemsaithong, P., Korzeniewski, S. J., Yeo, L. & Romero, R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat. Rev. Nephrol. http://dx.doi.org/10.1038/nrneph.2014.102.

  2. Kuc, S. et al. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first-trimester prediction of preeclampsia: a systematic review. Obstet. Gynecol. Surv. 66, 225–239 (2011).

    PubMed  Google Scholar 

  3. Askie, L. M., Duley, L., Henderson-Smart, D. J. & Stewart, L. A. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet 369, 1791–1798 (2007).

    CAS  PubMed  Google Scholar 

  4. Bujold, E. et al. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet. Gynecol. 116, 402–414 (2010).

    PubMed  Google Scholar 

  5. Vadillo-Ortega, F. et al. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial. BMJ 342, d2901 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Roberge, S. et al. Early administration of low-dose aspirin for the prevention of severe and mild preeclampsia: a systematic review and meta-analysis. Am. J. Perinatol. 29, 551–556 (2012).

    PubMed  Google Scholar 

  7. Goel, A. & Rana, S. Angiogenic factors in preeclampsia: potential for diagnosis and treatment. Curr. Opin. Nephrol. Hypertens. 22, 643–650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagmann, H., Thadhani, R., Benzing, T., Karumanchi, S. A. & Stepan, H. The promise of angiogenic markers for the early diagnosis and prediction of preeclampsia. Clin. Chem. 58, 837–845 (2012).

    CAS  PubMed  Google Scholar 

  9. Silasi, M., Cohen, B., Karumanchi, S. A. & Rana, S. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet. Gynecol. Clin. North Am. 37, 239–253 (2010).

    PubMed  Google Scholar 

  10. Smith, G. C. & Wear, H. The perinatal implications of angiogenic factors. Curr. Opin. Obstet. Gynecol. 21, 111–116 (2009).

    PubMed  Google Scholar 

  11. Roberts, J. M. & Bell, M. J. If we know so much about preeclampsia, why haven't we cured the disease? J. Reprod. Immunol. 99, 1–9 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Chaiworapongsa, T. et al. Maternal plasma concentrations of angiogenic/anti-angiogenic factors are of prognostic value in patients presenting to the obstetrical triage area with the suspicion of preeclampsia. J. Matern. Fetal Neonatal Med. 24, 1187–1207 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore, A. G. et al. Angiogenic biomarkers for prediction of maternal and neonatal complications in suspected preeclampsia. J. Matern. Fetal Neonatal Med. 25, 2651–2657 (2012).

    CAS  PubMed  Google Scholar 

  14. Rana, S. et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 125, 911–919 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaiworapongsa, T. et al. Plasma concentrations of angiogenic/anti-angiogenic factors have prognostic value in women presenting with suspected preeclampsia to the obstetrical triage area: a prospective study. J. Matern. Fetal Neonatal Med. 7, 132–144 (2013).

    Google Scholar 

  16. Moore Simas, T. A. et al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am. J. Obstet. Gynecol. 197, 244.e1–244.e8 (2007).

    Google Scholar 

  17. Li, Z. et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 50, 686–692 (2007).

    CAS  PubMed  Google Scholar 

  18. Gilbert, J. S. et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 55, 380–385 (2010).

    CAS  PubMed  Google Scholar 

  19. Kumasawa, K. et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl Acad. Sci. USA 108, 1451–1455 (2011).

    CAS  PubMed  Google Scholar 

  20. Thadhani, R. et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124, 940–950 (2011).

    CAS  PubMed  Google Scholar 

  21. Woods, A. K. et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension 57, 94–102 (2011).

    CAS  PubMed  Google Scholar 

  22. Jiang, X. et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1). FASEB J. 27, 1245–1253 (2013).

    CAS  PubMed  Google Scholar 

  23. Brown, M. C. et al. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur. J. Epidemiol. 28, 1–19 (2013).

    PubMed  Google Scholar 

  24. Vikse, B. E., Irgens, L. M., Leivestad, T., Skjaerven, R. & Iversen, B. M. Preeclampsia and the risk of end-stage renal disease. N. Engl. J. Med. 359, 800–809 (2008).

    CAS  PubMed  Google Scholar 

  25. Forest, J. C. et al. Candidate biochemical markers for screening of pre-eclampsia in early pregnancy. Clin. Chem. Lab. Med. 50, 973–984 (2012).

    CAS  PubMed  Google Scholar 

  26. Anderson, U. D., Olsson, M. G., Kristensen, K. H., Akerstrom, B. & Hansson, S. R. Review: Biochemical markers to predict preeclampsia. Placenta 33 (Suppl.), S42–S47 (2012).

    PubMed  Google Scholar 

  27. Spencer, K., Cowans, N. J., Chefetz, I., Tal, J. & Meiri, H. First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet. Gynecol. 29, 128–134 (2007).

    CAS  PubMed  Google Scholar 

  28. Ong, C. Y., Liao, A. W., Spencer, K., Munim, S. & Nicolaides, K. H. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 107, 1265–1270 (2000).

    CAS  PubMed  Google Scholar 

  29. Spencer, K., Yu, C. K., Cowans, N. J., Otigbah, C. & Nicolaides, K. H. Prediction of pregnancy complications by first-trimester maternal serum PAPP-A and free β-hCG and with second-trimester uterine artery Doppler. Prenat. Diagn. 25, 949–953 (2005).

    CAS  PubMed  Google Scholar 

  30. Odibo, A. O. et al. Placental volume and vascular flow assessed by 3D power Doppler and adverse pregnancy outcomes. Placenta 32, 230–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Plasencia, W., Maiz, N., Poon, L., Yu, C. & Nicolaides, K. H. Uterine artery Doppler at 11 + 0 to 13 + 6 weeks and 21 + 0 to 24 + 6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet. Gynecol. 32, 138–146 (2008).

    CAS  PubMed  Google Scholar 

  32. Romero, R. et al. First-trimester maternal serum PP13 in the risk assessment for preeclampsia. Am. J. Obstet. Gynecol. 199, 122.e121–122.e111 (2008).

    Google Scholar 

  33. Nicolaides, K. H. et al. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet. Gynecol. 27, 13–17 (2006).

    CAS  PubMed  Google Scholar 

  34. Akolekar, R., Syngelaki, A., Beta, J., Kocylowski, R. & Nicolaides, K. H. Maternal serum placental protein 13 at 11–13 weeks of gestation in preeclampsia. Prenat. Diagn. 29, 1103–1108 (2009).

    PubMed  Google Scholar 

  35. Stamatopoulou, A., Cowans, N. J., Matwejew, E., von Kaisenberg, C. & Spencer, K. Placental protein-13 and pregnancy-associated plasma protein-A as first trimester screening markers for hypertensive disorders and small for gestational age outcomes. Hypertens. Pregnancy 30, 384–395 (2011).

    CAS  PubMed  Google Scholar 

  36. Akolekar, R., Syngelaki, A., Sarquis, R., Zvanca, M. & Nicolaides, K. H. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat. Diagn. 31, 66–74 (2011).

    PubMed  Google Scholar 

  37. Wright, D., Akolekar, R., Syngelaki, A., Poon, L. C. & Nicolaides, K. H. A competing risks model in early screening for preeclampsia. Fetal Diagn. Ther. 32, 171–178 (2012).

    PubMed  Google Scholar 

  38. Akolekar, R., Syngelaki, A., Poon, L., Wright, D. & Nicolaides, K. H. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn. Ther. 33, 8–15 (2013).

    PubMed  Google Scholar 

  39. Pedrosa, A. C. & Matias, A. Screening for pre-eclampsia: a systematic review of tests combining uterine artery Doppler with other markers. J. Perinat. Med. 39, 619–635 (2011).

    PubMed  Google Scholar 

  40. Herraiz, I. et al. Application of a first-trimester prediction model for pre-eclampsia based on uterine arteries and maternal history in high-risk pregnancies. Prenat. Diagn. 29, 1123–1129 (2009).

    CAS  PubMed  Google Scholar 

  41. Farina, A. et al. Prospective evaluation of ultrasound and biochemical-based multivariable models for the prediction of late pre-eclampsia. Prenat. Diagn. 31, 1147–1152 (2011).

    PubMed  Google Scholar 

  42. Smith, G. C. Researching new methods of screening for adverse pregnancy outcome: lessons from pre-eclampsia. PLoS Med. 9, e1001274 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Rasanen, J. et al. Comprehensive maternal serum proteomic profiles of preclinical and clinical preeclampsia. J. Proteome Res. 9, 4274–4281 (2010).

    CAS  PubMed  Google Scholar 

  44. Carty, D. M. et al. Urinary proteomics for prediction of preeclampsia. Hypertension 57, 561–569 (2011).

    CAS  PubMed  Google Scholar 

  45. Kenny, L. C. et al. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension 56, 741–749 (2010).

    CAS  PubMed  Google Scholar 

  46. Bahado-Singh, R. O. et al. First-trimester metabolomic detection of late-onset preeclampsia. Am. J. Obstet. Gynecol. 208, 58.e1–58.e7 (2013).

    CAS  Google Scholar 

  47. Bahado-Singh, R. O. et al. Metabolomics and first-trimester prediction of early-onset preeclampsia. J. Matern. Fetal Neonatal Med. 25, 1840–1847 (2012).

    CAS  PubMed  Google Scholar 

  48. Leung, T. N., Zhang, J., Lau, T. K., Chan, L. Y. & Lo, Y. M. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin. Chem. 47, 137–139 (2001).

    CAS  PubMed  Google Scholar 

  49. Farina, A. et al. Cell-free fetal DNA (SRY locus) concentration in maternal plasma is directly correlated to the time elapsed from the onset of preeclampsia to the collection of blood. Prenat. Diagn. 24, 293–297 (2004).

    PubMed  Google Scholar 

  50. Purwosunu, Y. et al. Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat. Diagn. 27, 772–777 (2007).

    CAS  PubMed  Google Scholar 

  51. Purwosunu, Y. et al. Prediction of preeclampsia by analysis of cell-free messenger RNA in maternal plasma. Am. J. Obstet. Gynecol. 200, 386.e1–386.e7 (2009).

    Google Scholar 

  52. Levine, R. J. et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol. 190, 707–713 (2004).

    CAS  PubMed  Google Scholar 

  53. Crowley, A. et al. Free fetal DNA is not increased before 20 weeks in intrauterine growth restriction or pre-eclampsia. Prenat. Diagn. 27, 174–179 (2007).

    CAS  PubMed  Google Scholar 

  54. Poon, L. C., Musci, T., Song, K., Syngelaki, A. & Nicolaides, K. H. Maternal plasma cell-free fetal and maternal DNA at 11–13 weeks' gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn. Ther. 33, 215–223 (2013).

    CAS  PubMed  Google Scholar 

  55. Sekizawa, A. et al. Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15–20 weeks of gestation. BJOG. 117, 557–564 (2010).

    CAS  PubMed  Google Scholar 

  56. Farina, A. et al. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10–14 weeks. Am. J. Obstet. Gynecol. 203, 575.e1–575.e7 (2010).

    CAS  Google Scholar 

  57. von Dadelszen, P. et al. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet 377, 219–227 (2011).

    PubMed  Google Scholar 

  58. Payne, B. et al. Performance of the fullPIERS model in predicting adverse maternal outcomes in pre-eclampsia using patient data from the PIERS (Pre-eclampsia Integrated Estimate of RiSk) cohort, collected on admission. BJOG 120, 113–118 (2013).

    CAS  PubMed  Google Scholar 

  59. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).

    CAS  PubMed  Google Scholar 

  61. Kusanovic, J. P. et al. A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J. Matern. Fetal Neonatal Med. 22, 1021–1038 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moore Simas, T. A. et al. Angiogenic biomarkers for prediction of early preeclampsia onset in high-risk women. J. Matern Fetal Neonatal Med. 27, 1038–1048 (2014).

    CAS  PubMed  Google Scholar 

  63. Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).

    CAS  PubMed  Google Scholar 

  64. Chaiworapongsa, T. et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am. J. Obstet. Gynecol. 190, 1541–1550 (2004).

    CAS  PubMed  Google Scholar 

  65. Rana, S. et al. Plasma concentrations of soluble endoglin versus standard evaluation in patients with suspected preeclampsia. PLoS ONE 7, e48259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chappell, L. C. et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation 128, 2121–2131 (2013).

    CAS  PubMed  Google Scholar 

  67. Rana, S. et al. Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens. Pregnancy 32, 189–201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Powers, R. W. et al. Low placental growth factor across pregnancy identifies a subset of women with preterm preeclampsia: type 1 versus type 2 preeclampsia? Hypertension 60, 239–246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rana, S., Karumanchi, S. A. & Lindheimer, M. D. Angiogenic factors in diagnosis, management, and research in preeclampsia. Hypertension 63, 198–202 (2014).

    CAS  PubMed  Google Scholar 

  70. Chaiworapongsa, T. et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal Neonatal Med. 17, 3–18 (2005).

    CAS  PubMed  Google Scholar 

  71. Sibiude, J. et al. Placental growth factor for the prediction of adverse outcomes in patients with suspected preeclampsia or intrauterine growth restriction. PLoS ONE 7, e50208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schnettler, W. et al. Cost and resource implications with serum angiogenic factor estimation in the triage of pre-eclampsia. BJOG 120, 1224–1232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rolfo, A. et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 83, 177–181 (2013).

    CAS  PubMed  Google Scholar 

  74. Di Marco, G. S. et al. The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD. J. Am. Soc. Nephrol. 20, 2235–2245 (2009).

    CAS  PubMed  Google Scholar 

  75. Williams, W. W. Jr, Ecker, J. L., Thadhani, R. I. & Rahemtullah, A. Case records of the Massachusetts General Hospital. Case 38–2005. A 29-year-old pregnant woman with the nephrotic syndrome and hypertension. N. Engl. J. Med. 353, 2590–2600 (2005).

    CAS  PubMed  Google Scholar 

  76. Qazi, U., Lam, C., Karumanchi, S. A. & Petri, M. Soluble Fms-like tyrosine kinase associated with preeclampsia in pregnancy in systemic lupus erythematosus. J. Rheumatol. 35, 631–634 (2008).

    CAS  PubMed  Google Scholar 

  77. Shan, H. Y. et al. Use of circulating antiangiogenic factors to differentiate other hypertensive disorders from preeclampsia in a pregnant woman on dialysis. Am. J. Kidney Dis. 51, 1029–1032 (2008).

    PubMed  Google Scholar 

  78. Masuyama, H. et al. Circulating angiogenic factors in preeclampsia, gestational proteinuria, and preeclampsia superimposed on chronic glomerulonephritis. Am. J. Obstet. Gynecol. 194, 551–556 (2006).

    CAS  PubMed  Google Scholar 

  79. Masuyama, H. et al. Superimposed preeclampsia in women with chronic kidney disease. Gynecol. Obstet. Invest. 74, 274–281 (2012).

    PubMed  Google Scholar 

  80. Widmer, M. et al. Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review. Obstet. Gynecol. 109, 168–180 (2007).

    CAS  PubMed  Google Scholar 

  81. Sibai, B. M. et al. Serum inhibin A and angiogenic factor levels in pregnancies with previous preeclampsia and/or chronic hypertension: are they useful markers for prediction of subsequent preeclampsia? Am. J. Obstet. Gynecol. 199, 268.e1–268.e9 (2008).

    Google Scholar 

  82. McElrath, T. F. et al. Longitudinal evaluation of predictive value for preeclampsia of circulating angiogenic factors through pregnancy. Am. J. Obstet. Gynecol. 207, 407.e1–407.e7 (2012).

    CAS  Google Scholar 

  83. Myatt, L. et al. Can changes in angiogenic biomarkers between the first and second trimesters of pregnancy predict development of pre-eclampsia in a low-risk nulliparous patient population? BJOG 120, 1183–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Myers, J. et al. Angiogenic factors combined with clinical risk factors to predict preterm pre-eclampsia in nulliparous women: a predictive test accuracy study. BJOG 120, 1215–1223 (2013).

    CAS  PubMed  Google Scholar 

  85. Chaiworapongsa, T. et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am. J. Obstet. Gynecol. 208, 287.e1–287.e15 (2013).

    CAS  Google Scholar 

  86. Lai, J., Syngelaki, A., Poon, L. C., Nucci, M. & Nicolaides, K. H. Maternal serum soluble endoglin at 30–33 weeks in the prediction of preeclampsia. Fetal Diagn. Ther. 33, 149–155 (2013).

    PubMed  Google Scholar 

  87. Kleinrouweler, C. E. et al. Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG 119, 778–787 (2012).

    CAS  PubMed  Google Scholar 

  88. Powers, R. W. et al. Soluble fms-Like tyrosine kinase 1 (sFlt1), endoglin and placental growth factor (PlGF) in preeclampsia among high risk pregnancies. PLoS ONE 5, e13263 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Driscoll, D. A. & Gross, S. Clinical practice. Prenatal screening for aneuploidy. N. Engl. J. Med. 360, 2556–2562 (2009).

    CAS  PubMed  Google Scholar 

  90. American College of Obstetricians and Gynecologists Task Force on Hypertension in Pregnancy, Hypertension in Pregnancy [online], (2013).

  91. Blackwell, S. C. et al. Labor induction for the preterm severe pre-eclamptic patient: is it worth the effort? J. Matern. Fetal Med. 10, 305–311 (2001).

    CAS  PubMed  Google Scholar 

  92. Sibai, B. M. Evaluation and management of severe preeclampsia before 34 weeks' gestation. Am. J. Obstet. Gynecol. 205, 191–198 (2011).

    PubMed  Google Scholar 

  93. Committee Opinion no. 514: emergent therapy for acute-onset, severe hypertension with preeclampsia or eclampsia. Obstet. Gynecol. 118, 1465–1468 (2011).

  94. Martin, J. N. Jr et al. Stroke and severe preeclampsia and eclampsia: a paradigm shift focusing on systolic blood pressure. Obstet. Gynecol. 105, 246–254 (2005).

    PubMed  Google Scholar 

  95. Redman, C. W. Hypertension in pregnancy: the NICE guidelines. Heart 97, 1967–1969 (2011).

    CAS  PubMed  Google Scholar 

  96. Magee, L. A., Helewa, M., Moutquin, J. M. & von Dadelszen, P. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. J. Obstet. Gynaecol. Can. 30 (Suppl. 1), S1–S48 (2008).

    PubMed  Google Scholar 

  97. Lowe, S. A. et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust. NZ J. Obstet. Gynaecol. 49, 242–246 (2009).

    Google Scholar 

  98. Gogarten, W. Preeclampsia and anaesthesia. Curr. Opin. Anaesthesiol. 22, 347–351 (2009).

    PubMed  Google Scholar 

  99. Umans, J. G., Abalos, E. J. & Lindheimer, M. D. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 369–388 (Elsevier, 2009).

    Google Scholar 

  100. Duley, L., Meher, S. & Jones, L. Drugs for treatment of very high blood pressure during pregnancy. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD001449. http://dx.doi.org/10.1002/14651858.CD001449.pub2.

  101. Sibai, B. M. Diagnosis, prevention, and management of eclampsia. Obstet. Gynecol. 105, 402–410 (2005).

    PubMed  Google Scholar 

  102. Smith, J. M. et al. An integrative review of the side effects related to the use of magnesium sulfate for pre-eclampsia and eclampsia management. BMC Pregnancy Childbirth 13, 34 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 345, 1455–1463 (1995).

  104. Altman, D. et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet 359, 1877–1890 (2002).

    PubMed  Google Scholar 

  105. Duley, L., Gulmezoglu, A. M., Henderson-Smart, D. J. & Chou, D. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD000025. http://dx.doi.org/10.1002/14651858.CD000025.

  106. Sibai, B. M. & Cunningham, F. G. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 214–225 (Elsevier, 2009).

    Google Scholar 

  107. Walsh, S. W. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am. J. Obstet. Gynecol. 152, 335–340 (1985).

    CAS  PubMed  Google Scholar 

  108. Romero, R., Lockwood, C., Oyarzun, E. & Hobbins, J. C. Toxemia: new concepts in an old disease. Semin. Perinatol. 12, 302–323 (1988).

    CAS  PubMed  Google Scholar 

  109. [No authors listed] CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. Lancet 343, 619–629 (1994).

  110. Duley, L., Henderson-Smart, D. J., Meher, S. & King, J. F. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD004659. http://dx.doi.org/10.1002/14651858.CD004659.pub2.

  111. Villa, P. M. et al. Aspirin in the prevention of pre-eclampsia in high-risk women: a randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG 120, 64–74 (2013).

    CAS  PubMed  Google Scholar 

  112. Conde-Agudelo, A., Romero, R., Kusanovic, J. P. & Hassan, S. S. Supplementation with vitamins C and E during pregnancy for the prevention of preeclampsia and other adverse maternal and perinatal outcomes: a systematic review and metaanalysis. Am. J. Obstet. Gynecol. 204, 503.e1–503.e12 (2011).

    Google Scholar 

  113. Belizan, J. M. & Villar, J. The relationship between calcium intake and edema-, proteinuria-, and hypertension-getosis: an hypothesis. Am. J. Clin. Nutr. 33, 2202–2210 (1980).

    CAS  PubMed  Google Scholar 

  114. Lopez-Jaramillo, P., Narvaez, M., Felix, C. & Lopez, A. Dietary calcium supplementation and prevention of pregnancy hypertension. Lancet 335, 293 (1990).

    CAS  PubMed  Google Scholar 

  115. Villar, J. & Repke, J. T. Calcium supplementation during pregnancy may reduce preterm delivery in high-risk populations. Am. J. Obstet. Gynecol. 163, 1124–1131 (1990).

    CAS  PubMed  Google Scholar 

  116. Belizan, J. M., Villar, J., Gonzalez, L., Campodonico, L. & Bergel, E. Calcium supplementation to prevent hypertensive disorders of pregnancy. N. Engl. J. Med. 325, 1399–1405 (1991).

    CAS  PubMed  Google Scholar 

  117. Levine, R. J. et al. Trial of calcium to prevent preeclampsia. N. Engl. J. Med. 337, 69–76 (1997).

    CAS  PubMed  Google Scholar 

  118. Hofmeyr, G. J., Lawrie, T. A., Atallah, A. N. & Duley, L. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD001059. http://dx.doi.org/10.1002/14651858.CD001059.pub3.

  119. Patrelli, T. S. et al. Calcium supplementation and prevention of preeclampsia: a meta-analysis. J. Matern. Fetal Neonatal Med. 25, 2570–2574 (2012).

    CAS  PubMed  Google Scholar 

  120. Costantine, M. M. & Cleary, K. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet. Gynecol. 121, 349–353 (2013).

    CAS  PubMed  Google Scholar 

  121. Loebstein, R., Lalkin, A. & Koren, G. Pharmacokinetic changes during pregnancy and their clinical relevance. Clin. Pharmacokinet. 33, 328–343 (1997).

    CAS  PubMed  Google Scholar 

  122. Edison, R. J. & Muenke, M. Mechanistic and epidemiologic considerations in the evaluation of adverse birth outcomes following gestational exposure to statins. Am. J. Med. Genet. A 131, 287–298 (2004).

    PubMed  Google Scholar 

  123. Nanovskaya, T. N. et al. Transplacental transfer and distribution of pravastatin. Am. J. Obstet. Gynecol. 209, 373.e1–373.e5 (2013).

    CAS  Google Scholar 

  124. Bar, J. et al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol. Dial. Transplant. 14, 1129–1132 (1999).

    CAS  PubMed  Google Scholar 

  125. Reiter, L., Brown, M. A. & Whitworth, J. A. Hypertension in pregnancy: the incidence of underlying renal disease and essential hypertension. Am. J. Kidney Dis. 24, 883–887 (1994).

    CAS  PubMed  Google Scholar 

  126. Williams, D. & Davison, J. Chronic kidney disease in pregnancy. BMJ 336, 211–215 (2008).

    PubMed  PubMed Central  Google Scholar 

  127. Fisher, K. A., Luger, A., Spargo, B. H. & Lindheimer, M. D. Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine (Baltimore) 60, 267–276 (1981).

    CAS  Google Scholar 

  128. Carty, D. M., Delles, C. & Dominiczak, A. F. Preeclampsia and future maternal health. J. Hypertens. 28, 1349–1355 (2010).

    CAS  PubMed  Google Scholar 

  129. Williams, D. Long-term complications of preeclampsia. Semin. Nephrol. 31, 111–122 (2011).

    PubMed  Google Scholar 

  130. Koopmans, C. M. et al. Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial. Lancet 374, 979–988 (2009).

    PubMed  Google Scholar 

  131. Tajik, P. et al. Should cervical favourability play a role in the decision for labour induction in gestational hypertension or mild pre-eclampsia at term? An exploratory analysis of the HYPITAT trial. BJOG 119, 1123–1130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pauli, J. M. et al. Management of gestational hypertension - the impact of HYPITATa. J. Perinat. Med. 41, 415–420 (2013).

    PubMed  Google Scholar 

  133. Smith, P., Anthony, J. & Johanson, R. Nifedipine in pregnancy. BJOG 107, 299–307 (2000).

    CAS  PubMed  Google Scholar 

  134. Hypertension in pregnancy: executive summary. Obstet. Gynecol. 122, 1122–1131 (2013).

Download references

Acknowledgements

The authors' research is supported partly by the Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services (NICHD/NIH/DHHS) and partly with Federal funding from the NICHD and NIH under contract no. HHSN275201300006C.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contribution to discussion of the content, wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tinnakorn Chaiworapongsa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiworapongsa, T., Chaemsaithong, P., Korzeniewski, S. et al. Pre-eclampsia part 2: prediction, prevention and management. Nat Rev Nephrol 10, 531–540 (2014). https://doi.org/10.1038/nrneph.2014.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing