Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The hybrid nature of the Eukaryota and a consilient view of life on Earth

Abstract

The origin of the eukaryotic cell, which is known as eukaryogenesis, has puzzled scientists for more than 100 years, and many hypotheses have been proposed. Recent analyses of new data enable the safe elimination of some of these hypotheses, whereas support for other hypotheses has increased. In this Opinion article, we evaluate the available theories for their compatibility with empirical observations and conclude that cellular life consists of two primary, paraphyletic prokaryotic groups and one secondary, monophyletic group that has symbiogenic origins — the eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competing scenarios for the origin of the eukaryotes and the highest-level structure for describing the diversity of cellular life.
Figure 2: The ring of life hypothesis.

Similar content being viewed by others

References

  1. Martin, W. & Kowallik, K. Annotated English translation of Mereschkowsky's 1905 paper 'Über Natur und Ursprung der Chromatophoren imvPflanzenreiche'. Eur. J. Phycol. 34, 287–295 (1999).

    Google Scholar 

  2. Wallin, I. E. The mitochondria problem. Am. Naturalist 57, 255–261 (1923).

    Article  Google Scholar 

  3. Alvarez-Ponce, D., Bapteste, E., Lopez, P. & McInerney, J. O. Gene similarity networks provide new tools for understanding eukaryote origins and evolution. Proc. Natl Acad. Sci. USA 110, E1594–E1603 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. López-García, P. & Moreira, D. Selective forces for the origin of the eukaryotic nucleus. Bioessays 28, 525–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Stechmann, A. & Cavalier-Smith, T. The root of the eukaryote tree pinpointed. Curr. Biol. 13, 665–666 (2003).

    Article  CAS  Google Scholar 

  11. Popper, K. R. The Logic of Scientific Discovery (Routledge, 1959).

    Google Scholar 

  12. Whewell, W. The Philosophy Of Inductive Sciences, Founded Upon Their History (John W. Parker, 1840).

    Google Scholar 

  13. Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies indicate a meaningful α-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol. Biol. Evol. 23, 74–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Margulis, L. Archaeal–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl Acad. Sci. USA 93, 1071–1076 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rinke, C., Schwientek, P., Sczyrba, A. & Ivanova, N. N. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Thiergart, T., Landan, G., Schenk, M., Dagan, T. & Martin, W. F. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol. Evol. 4, 466–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Devos, D. P. & Reynaud, E. G. Evolution. Intermediate steps. Science 330, 1187–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McInerney, J. O. et al. Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 33, 810–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirt, R. P. et al. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roger, A. J. et al. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl Acad. Sci. USA 95, 229–234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez-Ezpeleta, N. & Embley, T. M. The SAR11 group of α-proteobacteria is not related to the origin of mitochondria. PLOS ONE 7, e30520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bapteste, E. et al. Evolutionary analyses of non-genealogical bonds produced by introgressive descent. Proc. Natl Acad. Sci. USA 109, 18266–18272 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brinkmann, H. & Philippe, H. Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Forterre, P. The origin of DNA genomes and DNA replication proteins. Curr. Opin. Microbiol. 5, 525–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Van Valen, L. M. & Maiorana, V. C. The archaebacteria and eukaryotic origins. Nature 287, 248–250 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. de Duve, C. The origin of eukaryotes: a reappraisal. Nature Rev. Genet. 8, 395–403 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Cotton, J. A. & McInerney, J. O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl Acad. Sci. USA 107, 17252–17255 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Margulis, L., Bermudes, D. & Obar, R. Symbiosis in evolution: status of the hypothesis of the spirochete origin of undulipodia. Orig. Life Evol. Biosph. 16, 319 (1986).

    Article  Google Scholar 

  36. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams, T. A., Foster, P. G., Nye, T. M. W., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci. 279, 4870–4879 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lake, J. A., Servin, J. A., Herbold, C. W. & Skophammer, R. G. Evidence for a new root of the tree of life. Systemat. Biol. 57, 835–843 (2008).

    Article  CAS  Google Scholar 

  39. Dagan, T., Roettger, M., Bryant, D. & Martin, W. Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379–392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenet. Evol. 69, 17–38 (2013).

    Article  PubMed  Google Scholar 

  42. Creevey, C. J., Doerks, T., Fitzpatrick, D. A., Raes, J. & Bork, P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLOS ONE 6, e22099 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gouy, M. & Li, W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev. Microbiol. 8, 743–752 (2010).

    Article  CAS  Google Scholar 

  47. Williams, T. A. & Embley, T. M. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol. Evol. 6, 474–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl Acad. Sci. USA 93, 7749–7754 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McLnerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cox, C., Foster, P., Hirt, R. & Harris, S. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. Lond. B Biol. Sci. 364, 2197–2207 (2009).

    Article  Google Scholar 

  53. Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).

    Article  PubMed  Google Scholar 

  54. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Guy, L. & Ettema, T. J. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol. 8, 731–741 (2010).

    Article  CAS  Google Scholar 

  58. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci. 4, 698–702 (2011).

    Article  CAS  Google Scholar 

  60. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361, 1023 (2006).

    Article  CAS  Google Scholar 

  61. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113.

  63. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Brocks, J. J. & Banfield, J. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nature Rev. Microbiol. 7, 601–609 (2009).

    Article  CAS  Google Scholar 

  65. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shih, P. M. & Matzke, N. J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alvarez-Ponce, D. & McInerney, J. O. The human genome retains relics of its prokaryotic ancestry: human genes of archaebacterial and eubacterial origin exhibit remarkable differences. Genome Biol. Evol. 3, 782–790 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poole, A. M. & Penny, D. Evaluating hypotheses for the origin of eukaryotes. Bioessays 29, 74–84 (2007).

    Article  PubMed  Google Scholar 

  72. Naor, A. & Gophna, U. Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered 4, 126–129 (2013).

    Article  PubMed  Google Scholar 

  73. Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22, 1444–1448 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Wachtershauser, G. From pre-cells to Eukarya — a tale of two lipids. Mol. Microbiol. 47, 13–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50, 4114–4120 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lake, J. A. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Beiko, R. G., Harlow, T. J. & Ragan, M. A. Highways of gene sharing in prokaryotes. Proc. Natl Acad. Sci. USA 102, 14332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moran, N. A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci. USA 103, 3669–3674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Science Foundation Ireland research Frontiers Program (EOB2673) to M.J.O'C., (EOB3106) to D.P. and J.O.M. and Fulbright Commission for Fulbright Scholarship to M.J.O'C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James O. McInerney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Among-site rate variation

A term used to describe the fact that different nucleotide or amino acid positions in a molecular sequence can change at different rates. This is usually caused by variation in selection pressure, although it may also be caused by variation in mutation rate.

CAT mixture model

A phylogenetic model that assumes that alignment positions might evolve according to different processes. The number of processes, the equilibrium frequencies of amino acids and the assignation of sites to categories are all free parameters of this model.

Eocyte hypothesis

A hypothesis relating to nucleocytosolic genes in eukaryotes that evolutionary history has placed within the Archaebacteria in a sister-group relationship with 'Eocyte' archaebacteria. This Eocyte hypothesis implies that the Archaebacteria are not a monophyletic taxon and that eukaryotes arose from within the Archaebacteria.

Evolutionary parsimony

(Also known as 'Lakes invariants'). A method of resolving a four-taxon problem. A set of equations calculate three invariants — one for each topology. For the correct phylogenetic tree, the invariant is non-zero, whereas the invariant is zero for the other two topologies.

Heterogeneous models

Phylogenetic models that allow for different evolutionary processes in different parts of the data and evolutionary history. Heterogeneity can be allowed in evolutionary rates and sequence composition.

Homogeneous model

A phylogenetic model that implies that there has been a constant rate of evolution, a constant sequence composition, or both, for the duration of the evolutionary history of the sequences that are under consideration.

Maximum parsimony

A method that prefers phylogenetic trees that minimize the number of substitutions required to explain the observed distribution of character states in a data set.

Neighbour joining

A fast clustering approach to infer phylogenetic trees based on distance matrices that have been derived from alignments.

Node discrete compositional heterogeneity model

A model that allows different branches of a phylogenetic tree to evolve using different sequence compositions. Composition vectors are distributed throughout the tree and their placement is calculated as part of the optimization process.

Nucleomorph

A vestigial eukaryotic nucleus thought to be descended from algae that were themselves engulfed by other eukaryotes. Therefore, nucleomorphs represent secondary endosymbiotic events.

Ring of life hypothesis

A proposal that eukaryotic genomes are composed of genes that have two separate sources — one from within the Eubacteria and one from within the Archaebacteria — effectively creating a ring of life, not a tree of life.

Sequence similarity network

A network that consists of nodes that can either represent genes or genomes; the edges that connect these nodes are statements of homology. Therefore, the basic unit of a gene similarity network is a pair of nodes connected by an edge; however, these networks can be very large, consisting of connected components that embed thousands, or even millions, of nodes.

Symbiogenic

A term used to describe the merging of two separate organisms to form one new organism.

TACK group

A group of Archaebacteria that consists of four smaller groups (equivalent to phyla); these are the Thaumarchaeota, the Aigarchaeota, the Crenarchaeota and the Korarchaeota.

Three-domains hypothesis

A hypothesis that depicts the Eukaryota, the Eubacteria and the Archaebacteria as three monophyletic groups, generating a three-domains tree of life. This topology is generally recovered using nucleocytosolic informational proteins and homogeneous models of sequence evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInerney, J., O'Connell, M. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat Rev Microbiol 12, 449–455 (2014). https://doi.org/10.1038/nrmicro3271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing