Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Host factors involved in retroviral budding and release

Key Points

  • Retroviral Gag proteins encode all the activities that are required for virion assembly and release. These activities include Gag multimerization, interaction with the plasma membrane and encapsidation of the genomic viral RNA.

  • Most retroviruses bud at the plasma membrane. In macrophages, HIV-1 assembly can be visualized in complex plasma membrane invaginations.

  • Retroviruses induce synaptic structures and filopodial processes to promote their cell-to-cell transfer.

  • Retroviral egress requires late-budding activity domains (L-domains) that facilitate the resolution of the membrane stalk connecting the nascent virions to the host cell at the end of assembly. L-domains are short amino acid motifs, encoded by Gag, that recruit the ESCRT pathway, a highly conserved cellular machinery that mediates membrane scission events which resemble the topology observed in retroviral budding.

  • The ESCRT machinery is modular in nature, and it can be subverted by enveloped viruses to facilitate viral assembly and release. Recent advances in studies of viral assembly and release have increased our understanding of the mechanisms that are employed by the core ESCRT machinery in membrane deformation and scission.

  • The mechanism of action of tetherin, an interferon-induced membrane protein that inhibits the release of mammalian enveloped viruses, has also been elucidated, as well as the countermeasures that HIV-1 and related viruses deploy to inhibit its function.

Abstract

The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of retroviral budding, release and spread.
Figure 2: Recruitment of host factors by L-domains.
Figure 3: Membrane scission by the ESCRT machinery.
Figure 4: Restriction of retroviral release by tetherin, and lentivirus-encoded countermeasures.

Similar content being viewed by others

References

  1. Frankel, A. D. & Young, J. A. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gheysen, D. et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59, 103–112 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Gottlinger, H. G. The HIV-1 assembly machine. AIDS 15 (Suppl. 5), S13–S20 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Gottlinger, H. G., Sodroski, J. G. & Haseltine, W. A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 86, 5781–5785 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103, 11364–11369 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K. & Freed, E. O. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl Acad. Sci. USA 101, 14889–14894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chukkapalli, V., Oh, S. J. & Ono, A. Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc. Natl Acad. Sci. USA 107, 1600–1605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perez-Caballero, D., Hatziioannou, T., Martin-Serrano, J. & Bieniasz, P. D. Human immunodeficiency virus type 1 matrix inhibits and confers cooperativity on Gag precursor-membrane interactions. J. Virol. 78, 9560–9563 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ganser-Pornillos, B. K., Yeager, M. & Sundquist, W. I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18, 203–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Towers, G. J. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4, 40 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kutluay, S. B. & Bieniasz, P. D. Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog. 6, e1001200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D'Souza, V. & Summers, M. F. How retroviruses select their genomes. Nature Rev. Microbiol. 3, 643–655 (2005).

    Article  CAS  Google Scholar 

  13. Accola, M. A., Strack, B. & Gottlinger, H. G. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J. Virol. 74, 5395–5402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gross, I., Hohenberg, H. & Krausslich, H. G. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Alfadhli, A., Still, A. & Barklis, E. Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J. Virol. 83, 12196–12203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swanson, C. M., Puffer, B. A., Ahmad, K. M., Doms, R. W. & Malim, M. H. Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J. 23, 2632–2640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherer, N. M., Swanson, C. M., Papaioannou, S. & Malim, M. H. Matrix mediates the functional link between human immunodeficiency virus type 1 RNA nuclear export elements and the assembly competency of Gag in murine cells. J. Virol. 83, 8525–8535 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bieniasz, P. D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Freed, E. O. Viral late domains. J. Virol. 76, 4679–4687 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Carlson, L. A. et al. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4, 592–599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ono, A. Relationships between plasma membrane microdomains and HIV-1 assembly. Biol. Cell 102, 335–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sfakianos, J. N. & Hunter, E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4, 671–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Linial, M. L. & Eastman, S. W. Particle assembly and genome packaging. Curr. Top. Microbiol. Immunol. 277, 89–110 (2003).

    CAS  PubMed  Google Scholar 

  26. Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jouvenet, N. et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jouve, M., Sol-Foulon, N., Watson, S., Schwartz, O. & Benaroch, P. HIV-1 buds and accumulates in “nonacidic” endosomes of macrophages. Cell Host Microbe 2, 85–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Deneka, M., Pelchen-Matthews, A., Byland, R., Ruiz-Mateos, E. & Marsh, M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell Biol. 177, 329–341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welsch, S. et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3, e36 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bennett, A. E. et al. Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages. PLoS Pathog. 5, e1000591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gousset, K. et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 4, e1000015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. 24, 2481–2489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, H. J., Reuter, M. A. & McDonald, D. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4, e1000134 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Groot, F., Welsch, S. & Sattentau, Q. J. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111, 4660–4663 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Felts, R. L. et al. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc. Natl Acad. Sci. USA 107, 13336–13341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mothes, W., Sherer, N. M., Jin, J. & Zhong, P. Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sattentau, Q. Avoiding the void: cell-to-cell spread of human viruses. Nature Rev. Microbiol. 6, 815–826 (2008).

    Article  CAS  Google Scholar 

  39. Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q. J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004). References 39 and 40 demonstrate the induction of a polarized synapse that mediates the transfer of HTLV-1 and HIV-1 between T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jolly, C. & Sattentau, Q. J. Regulated secretion from CD4+ T cells. Trends Immunol. 28, 474–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Rudnicka, D. et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J. Virol. 83, 6234–6246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nature Med. 16, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Llewellyn, G. N., Hogue, I. B., Grover, J. R. & Ono, A. Nucleocapsid promotes localization of HIV-1 Gag to uropods that participate in virological synapses between T cells. PLoS Pathog. 6, e1001167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sourisseau, M., Sol- Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, P., Hubner, W., Spinelli, M. A. & Chen, B. K. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 81, 12582–12595 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martin, N. et al. Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J. Virol. 84, 3516–3527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hubner, W. et al. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009). A real-time analysis of HIV-1 synaptic transfer, as monitored by three-dimensional fluorescence microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujii, K. et al. Functional role of Alix in HIV-1 replication. Virology 391, 284–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol. 10, 211–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gottlinger, H. G., Dorfman, T., Sodroski, J. G. & Haseltine, W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl Acad. Sci. USA 88, 3195–3199 (1991). The first description of a functional L-domain in an enveloped virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parent, L. J. et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J. Virol. 69, 5455–5460 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Strack, B., Calistri, A., Accola, M. A., Palu, G. & Gottlinger, H. G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl Acad. Sci. USA 97, 13063–13068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schubert, U. et al. Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl Acad. Sci. USA 97, 13057–13062 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patnaik, A., Chau, V. & Wills, J. W. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl Acad. Sci. USA 97, 13069–13074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). References 57 and 58 show that TSG101 is necessary and sufficient for P(S/T)AP-dependent budding.

    Article  CAS  PubMed  Google Scholar 

  59. Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003). References 61–63 provide the first evidence that different L-domains recruit alternative adaptor proteins that bind the core ESCRT machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pornillos, O., Alam, S. L., Davis, D. R. & Sundquist, W. I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  65. Im, Y. J. et al. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 18, 1536–1547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279, 36059–36071 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Morita, E. et al. Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2, 41–53 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eastman, S. W., Martin-Serrano, J., Chung, W., Zang, T. & Bieniasz, P. D. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J. Biol. Chem. 280, 628–636 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7, 1007–1016 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhai, Q., Landesman, M. B., Robinson, H., Sundquist, W. I. & Hill, C. P. Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1 . J. Virol. 85, 632–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nature Struct. Mol. Biol. 14, 194–199 (2007).

    Article  CAS  Google Scholar 

  75. Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vincent, O., Rainbow, L., Tilburn, J., Arst, H. N. Jr & Penalva, M. A. YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol. Cell Biol. 23, 1647–1655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Usami, Y., Popov, S. & Gottlinger, H. G. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81, 6614–6622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martin-Serrano, J. The role of ubiquitin in retroviral egress. Traffic 8, 1297–1303 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weiss, E. R. et al. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog. 6, e1001107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  Google Scholar 

  83. Joshi, A., Munshi, U., Ablan, S. D., Nagashima, K. & Freed, E. O. Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 9, 1972–1983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhadina, M. & Bieniasz, P. D. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog. 6, e1001153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhadina, M., McClure, M. O., Johnson, M. C. & Bieniasz, P. D. Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc. Natl Acad. Sci. USA 104, 20031–20036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rauch, S. & Martin-Serrano, J. Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications in PPXY-dependent budding. J. Virol. 85, 3546–3556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135, 714–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Schmitt, A. P., Leser, G. P., Morita, E., Sundquist, W. I. & Lamb, R. A. Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J. Virol. 79, 2988–2997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martin-Serrano, J. & Bieniasz, P. D. A bipartite late-budding domain in human immunodeficiency virus type 1. J. Virol. 77, 12373–12377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dilley, K. A., Gregory, D., Johnson, M. C. & Vogt, V. M. An LYPSL late domain in the gag protein contributes to the efficient release and replication of Rous sarcoma virus. J. Virol. 84, 6276–6287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chung, H. Y. et al. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J. Virol. 82, 4884–4897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Usami, Y., Popov, S., Popova, E. & Gottlinger, H. G. Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J. Virol. 82, 4898–4907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jadwin, J. A., Rudd, V., Sette, P., Challa, S. & Bouamr, F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J. Virol. 84, 704–715 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Popov, S., Popova, E., Inoue, M. & Gottlinger, H. G. Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J. Virol. 82, 1389–1398 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Dussupt, V. et al. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 5, e1000339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dussupt, V. et al. Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J. Virol. 85, 2304–2315 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Popov, S., Popova, E., Inoue, M. & Gottlinger, H. G. Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J. Virol. 83, 7185–7193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Popova, E., Popov, S. & Gottlinger, H. G. Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J. Virol. 84, 6590–6597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008). This study demonstrates the membrane deformation that is mediated by ESCRT-III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008). This article describes the helical structures that are formed by ESCRT-III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009). This report provides biochemical evidence of membrane scission by ESCRT-III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nature Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  Google Scholar 

  106. Peel, S., Macheboeuf, P., Martinelli, N. & Weissenhorn, W. Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem. Sci. 36, 199–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baumgartel, V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nature Cell Biol. 13, 469–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Jouvenet, N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nature Cell Biol. 13, 394–401 (2011). References 108 and 109 use live-imaging techniques to determine for the first time the kinetics of ESCRT recruitment during retroviral assembly.

    Article  CAS  PubMed  Google Scholar 

  110. Rossman, J. S., Jing, X., Leser, G. P. & Lamb, R. A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142, 902–913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Neil, S. & Bieniasz, P. Human immunodeficiency virus, restriction factors, and interferon. J. Interferon Cytokine Res. 29, 569–580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008). References 112 and 113 are the first to show that tetherin is the cellular factor responsible for restricting the release of Vpu-defective HIV-1 particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Evans, D. T., Serra-Moreno, R., Singh, R. K. & Guatelli, J. C. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol. 18, 388–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Neil, S. J., Eastman, S. W., Jouvenet, N. & Bieniasz, P. D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Neil, S. J., Sandrin, V., Sundquist, W. I. & Bieniasz, P. D. An interferon-a-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2, 193–203 (2007). References 115 and 116 demonstrate that, in the absence of Vpu, HIV-1 particles are retained by a protease-dependent tether on the plasma membrane and are subsequently endocytosed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Perez-Caballero, D. et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139, 499–511 (2009). This investigation provides comprehensive biochemical evidence for tetherin directly crosslinking cellular and viral membranes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hinz, A. et al. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 7, 314–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schubert, H. L. et al. Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc. Natl Acad. Sci. USA 107, 17951–17956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, H. et al. Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proc. Natl Acad. Sci. USA 107, 18428–18432 (2010). References 118–120 document the crystal structure of the extracellular domain of tetherin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rollason, R., Korolchuk, V., Hamilton, C., Schu, P. & Banting, G. Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J. Cell Sci. 120, 3850–3858 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Rollason, R., Korolchuk, V., Hamilton, C., Jepson, M. & Banting, G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J. Cell Biol. 184, 721–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fitzpatrick, K. et al. Direct restriction of virus release and incorporation of the interferon-induced protein BST-2 into HIV-1 particles. PLoS Pathog. 6, e1000701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hammonds, J., Wang, J. J., Yi, H. & Spearman, P. Immunoelectron microscopic evidence for tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane. PLoS Pathog. 6, e1000749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Habermann, A. et al. CD317/tetherin is enriched in the HIV-1 envelope and downregulated from the plasma membrane upon virus infection. J. Virol. 84, 4646–4658 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Andrew, A. J., Miyagi, E., Kao, S. & Strebel, K. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6, 80 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cao, W. et al. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med. 206, 1603–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Miyakawa, K. et al. BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog. 5, e1000700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jouvenet, N. et al. Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J. Virol. 83, 1837–1844 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Yondola, M. A. et al. The budding capability of the influenza virus neuraminidase can be modulated by tetherin. J. Virol. 85, 2480–2491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Douglas, J. L. et al. The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog. 6, e1000913 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dube, M., Bego, M. G., Paquay, C. & Cohen, E. A. Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7, 114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gupta, R. K. et al. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLoS Pathog. 5, e1000443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McNatt, M. W. et al. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 5, e1000300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dube, M. et al. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLoS Pathog. 6, e1000856 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Iwabu, Y. et al. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 284, 35060–35072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vigan, R. & Neil, S. J. Determinants of tetherin antagonism in the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J. Virol. 84, 12958–12970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kobayashi, T. et al. Identification of amino acids in the human tetherin transmembrane domain responsible for HIV-1 Vpu interaction and susceptibility. J. Virol. 85, 932–945 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Douglas, J. L. et al. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism. J. Virol. 83, 7931–7947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mitchell, R. S. et al. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via b-TrCP and endo-lysosomal trafficking. PLoS Pathog. 5, e1000450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goffinet, C. et al. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5, 285–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Mangeat, B. et al. HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS Pathog. 5, e1000574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Janvier, K. et al. The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog. 7, e1001265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dube, M. et al. Suppression of tetherin-restricting activity upon human immunodeficiency virus type 1 particle release correlates with localization of Vpu in the trans-Golgi network. J. Virol. 83, 4574–4590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pardieu, C. et al. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLoS Pathog. 6, e1000843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tokarev, A. A., Munguia, J. & Guatelli, J. C. Serine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. J. Virol. 85, 51–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Goffinet, C. et al. Antagonism of CD317 restriction of human immunodeficiency virus type 1 (HIV-1) particle release and depletion of CD317 are separable activities of HIV-1 Vpu. J. Virol. 84, 4089–4094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Miyagi, E., Andrew, A. J., Kao, S. & Strebel, K. Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc. Natl Acad. Sci. USA 106, 2868–2873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sauter, D. et al. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6, 409–421 (2009). This study shows that the ability of Vpu to target both tetherin and CD4 is associated only with HIV-1 group M, and the authors suggest that this attribute may have been essential for pandemic spread.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jia, B. et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 5, e1000429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, F. et al. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6, 54–67 (2009). References 150 and 151 demonstrate that the Nef proteins of SIVs target primate tetherin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gupta, R. K. et al. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc. Natl Acad. Sci. USA 106, 20889–20894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Le Tortorec, A. & Neil, S. J. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 83, 11966–11978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Serra-Moreno, R., Jia, B., Breed, M., Alvarez, X. & Evans, D. T. Compensatory changes in the cytoplasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic Nef-deleted SIV. Cell Host Microbe 9, 46–57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lim, E. S., Malik, H. S. & Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 84, 7124–7134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, J., Chen, K., Wang, J. H. & Zhang, C. Molecular evolution of the primate antiviral restriction factor tetherin. PLoS ONE 5, e11904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gummuluru, S., Kinsey, C. M. & Emerman, M. An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus. J. Virol. 74, 10882–10891 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Casartelli, N. et al. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 6, e1000955 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jolly, C., Booth, N. J. & Neil, S. J. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J. Virol. 84, 12185–12199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kuhl, B. D. et al. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7, 115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Okumura, A., Lu, G., Pitha-Rowe, I. & Pitha, P. M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl Acad. Sci. USA 103, 1440–1445 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pincetic, A., Kuang, Z., Seo, E. J. & Leis, J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J. Virol. 84, 4725–4736 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Groves, J. T., Parthasarathy, R. & Forstner, M. B. Fluorescence imaging of membrane dynamics. Annu. Rev. Biomed. Eng. 10, 311–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Gomez, C. Y. & Hope, T. J. Mobility of human immunodeficiency virus type 1 Pr55Gag in living cells. J. Virol. 80, 8796–806 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Larson, D. R., Johnson, M. C., Webb, W. W. & Vogt, V. M. Visualization of retrovirus budding with correlated light and electron microscopy. Proc. Natl Acad. Sci. USA 102, 15453–15458 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jouvenet, N., Bieniasz, P. D. & Simon, S. M. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454, 236–240 (2008). This work uses TIRFM to document the first real-time imaging of single mammalian-virus particles assembling at the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ivanchenko, S. et al. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5, e1000652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jouvenet, N., Simon, S. M. & Bieniasz, P. D. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc. Natl Acad. Sci. USA 106, 19114–19119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kemler, I., Meehan, A. & Poeschla, E. M. Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses. J. Virol. 84, 6352–6366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McDonald, B. & Martin-Serrano, J. No strings attached: the ESCRT machinery in viral budding and cytokinesis. J. Cell Sci. 122, 2167–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006). This report provides the first evidence for autoinhibitory mechanisms in ESCRT-III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Sherer, C. Jolly and M. Agromayor for critical reading of this manuscript, and S. Willey for help with some of the figures. We also acknowledge the many important studies from colleagues in the field that we have been unable cite owing to space constraints. J.M.S. is funded by the UK Lister Institute of Preventive Medicine, the European Molecular Biology Organisation (EMBO) Young Investigator Programme, the UK Medical Research Council (grant number G0802777) and the UK Wellcome Trust (grant number WT093056MA). S.J.D.N. is funded by a UK Wellcome Trust Research Career Development Fellowship (grant number WT082274MA) and the UK Medical Research Council (grant number G0801937).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Juan Martin-Serrano's homepage

Stuart J. D. Neil's homepage

Glossary

Virological synapse

An organized structure that forms at the junction between the infected cell and the uninfected target cell. This structure facilitates retroviral transfer in the absence of cell-to-cell fusion.

Cytonemes

Thin membranous bridges that connect two cells in the absence of a cytoplasmic connection.

ESCRT

(Endosomal sorting complex required for transport). A conserved cellular machinery for the sorting of ubiquitylated cargo proteins into vesicles that bud away from the cytoplasm, and the subsequent scission of the membrane neck. This machinery is also required for abscission, the last step in cell division. The recruitment of ESCRT proteins through retroviral late-budding domains (L-domains) is essential for viral assembly.

Vpu

A small integral membrane protein that is encoded by HIV-1. Vpu binds to human tetherin and counteracts its antiviral activity.

Tetherin

A mammalian interferon-induced type II membrane protein that inhibits the release of enveloped viral particles from infected cells.

Gag

A polyprotein encoded by all retroviruses that is processed to form the structural components of the mature viral particle.

Photoactivatable

Pertaining to a fluorescent protein: able to increase in fluorescence when excited by 488 nm light.

Photoconvertible

Pertaining to a fluorescent protein: able to change the emission spectrum on exposure to ultraviolet light.

Total internal reflection fluorescence microscopy

A microscopy technique that is based on the selective illumination of the molecules in a thin section near the coverslip. This technique is particularly suitable to the study of events that occur near or at the plasma membrane.

Fluorescence resonance energy transfer

A phenomenon of quantum mechanics that occurs when a pair of donor and acceptor fluorophores are less than 10 nm from each other, allowing excitation of the acceptor by emission from the donor.

Fluorescence recovery after photobleaching

A technique that consists of photobleaching fluorescent molecules in a defined region of the cell, followed by assessing the recovery of fluorescence in this region. The results provide diffusion coefficients of the fluorescent protein as an indication of its mobility.

Virus-like particles

Non-infectious viral particles that lack viral genetic material.

Electron tomography

An experimental strategy that is based on electron microscopy and allows three-dimensional reconstruction of biological samples.

Tetraspanins

A large group of structurally related, small membrane proteins that share the capacity to associate with themselves and with transmembrane receptors. They control viral infections and several cellular processes, including migration, cell-to-cell fusion and signalling.

Uropods

Cytoplasmic protrusions at the rear of a polarized cell. In activated T cells, uropods are enriched for cell adhesion molecules.

NEDD4-like HECT ubiquitin ligases

A family of E3 ubiquitin ligases that contain WW domains which bind to PPXY-dependent late-budding domains (L-domains) and are required for recruitment of the ESCRT machinery.

siRNA

(Small interfering RNA). A double-stranded, short RNA molecule that induces RNA interference and silencing of a target mRNA.

HIV-1 group M

The major phylogenetic group of HIV-1 that resulted in the HIV/AIDS pandemic. This group was originally derived from a zoonotic transfer of simian immunodeficiency virus from chimpanzees (SIVcpz) to a human. HIV-1 groups N, O and P represent separate zoonotic events, and the spread of these viruses is geographically limited.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Serrano, J., Neil, S. Host factors involved in retroviral budding and release. Nat Rev Microbiol 9, 519–531 (2011). https://doi.org/10.1038/nrmicro2596

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2596

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology