Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidative stress, protein damage and repair in bacteria

Key Points

  • Bacterial proteins can be damaged by oxidants that are present in the environment.

  • Cys and Met residues are easily oxidized.

  • Bacterial cells have a range of proteins that repair oxidized proteins.

  • Thioredoxins (Trxs) and glutaredoxins (Grxs) repair oxidized cysteine residues.

  • Methionine sulfoxide reductases (Msrs) repair oxidized methionine residues.

  • Antioxidant defences are present in the bacterial cytoplasm and in extracytoplasmic compartments.

Abstract

Oxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxidation of Cys and Met residues by oxidants.
Figure 2: Mechanisms of Trx and Grx activity.
Figure 3: Molecular mechanisms of MsrA and MsrB repair activity.
Figure 4: Repair of oxidized Cys residues in extracytoplasmic proteins.
Figure 5: Repair of methionine sulfoxide damage in bacterial cell envelope proteins.

Similar content being viewed by others

References

  1. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013). This paper provides a detailed review of oxidative stress in bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flannagan, R. S., Heit, B. & Heinrichs, D. E. Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens 4, 826–868 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hurst, J. K. What really happens in the neutrophil phagosome? Free Radic. Biol. Med. 53, 508–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Traore, D. A. et al. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat. Chem. Biol. 5, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Feeney, M. B. & Schoneich, C. Tyrosine modifications in aging. Antioxid. Redox Signal. 17, 1571–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thurlkill, R. L., Grimsley, G. R., Scholtz, J. M. & Pace, C. N. pK values of the ionizable groups of proteins. Protein Sci. 15, 1214–1218 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winterbourn, C. C. & Hampton, M. B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Nagy, P. Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal. 18, 1623–1641 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633–4679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roos, G. & Messens, J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davies, M. J. The oxidative environment and protein damage. Biochim. Biophys. Acta 1703, 93–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lavine, T. F. The formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. J. Biol. Chem. 169, 477–491 (1947).

    CAS  PubMed  Google Scholar 

  16. Lee, B. C. & Gladyshev, V. N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 50, 221–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Vogt, W. Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic. Biol. Med. 18, 93–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Schoneich, C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim. Biophys. Acta 1703, 111–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  CAS  Google Scholar 

  20. Pattison, D. I. & Davies, M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Padmaja, S., Squadrito, G. L., Lemercier, J. N., Cueto, R. & Pryor, W. A. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic. Biol. Med. 21, 317–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Collet, J. F. & Messens, J. Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal. 13, 1205–1216 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Arts, I. S., Vertommen, D., Baldin, F., Laloux, G. & Collet, J. F. Comprehensively characterizing the thioredoxin interactome in vivo highlights the central role played by this ubiquitous oxidoreductase in redox control. Mol. Cell. Proteomics 15, 2125–2140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collet, J. F., D'Souza, J. C., Jakob, U. & Bardwell, J. C. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem. 278, 45325–45332 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Ritz, D. et al. Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli. J. Biol. Chem. 275, 2505–2512 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Storz, G., Tartaglia, L. A. & Ames, B. N. Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194 (1990). This study reports the activation of OxyR, a transcription factor that controls an oxidative stress response, through the direct oxidation of a cysteine residue, which shows that oxidation is not always detrimental.

    Article  CAS  PubMed  Google Scholar 

  27. Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes, A. P. & Holmgren, A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal. 6, 63–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Vlamis-Gardikas, A. The multiple functions of the thiol-based electron flow pathways of Escherichia coli: eternal concepts revisited. Biochim. Biophys. Acta 1780, 1170–1200 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Iwema, T. et al. Structural basis for delivery of the intact [Fe2S2] cluster by monothiol glutaredoxin. Biochemistry 48, 6041–6043 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Newton, G. L. & Fahey, R. C. Mycothiol biochemistry. Arch. Microbiol. 178, 388–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Newton, G. L. et al. Bacillithiol is an antioxidant thiol produced in bacilli. Nat. Chem. Biol. 5, 625–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Delaye, L., Becerra, A., Orgel, L. & Lazcano, A. Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. J. Mol. Evol. 64, 15–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Brot, N., Weissbach, L., Werth, J. & Weissbach, H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl Acad. Sci. USA 78, 2155–2158 (1981). This work reports, for the first time, the ability of an Msr enzyme to reduce a methionine sulfoxide in a protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahman, M. A., Nelson, H., Weissbach, H. & Brot, N. Cloning, sequencing, and expression of the Escherichia coli peptide methionine sulfoxide reductase gene. J. Biol. Chem. 267, 15549–15551 (1992).

    CAS  PubMed  Google Scholar 

  36. Grimaud, R. et al. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915–48920 (2001). This study reports the identification of MsrB.

    Article  CAS  PubMed  Google Scholar 

  37. Lin, Z. et al. Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc. Natl Acad. Sci. USA 104, 9597–9602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ezraty, B., Bos, J., Barras, F. & Aussel, L. Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J. Bacteriol. 187, 231–237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. & Gladyshev, V. N. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl Acad. Sci. USA 99, 4245–4250 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharov, V. S., Ferrington, D. A., Squier, T. C. & Schoneich, C. Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett. 455, 247–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Moskovitz, J. et al. Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J. Biol. Chem. 275, 14167–14172 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Boschi-Muller, S., Olry, A., Antoine, M. & Branlant, G. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta 1703, 231–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Boschi-Muller, S., Azza, S. & Branlant, G. E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide. Protein Sci. 10, 2272–2279 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar, R. A., Koc, A., Cerny, R. L. & Gladyshev, V. N. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527–37535 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, H. Y. & Gladyshev, V. N. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol. 3, e375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Russel, M. & Model, P. The role of thioredoxin in filamentous phage assembly. Construction, isolation, and characterization of mutant thioredoxins. J. Biol. Chem. 261, 14997–15005 (1986).

    CAS  PubMed  Google Scholar 

  47. Boschi-Muller, S. & Branlant, G. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Bioorg. Chem. 57, 222–230 (2014). This review describes the chemistry of Msr enzymes.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, T. H. & Kim, H. Y. An anaerobic bacterial MsrB model reveals catalytic mechanisms, advantages, and disadvantages provided by selenocysteine and cysteine in reduction of methionine-R-sulfoxide. Arch. Biochem. Biophys. 478, 175–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Coudevylle, N. et al. Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): structural insight of the MsrA catalytic cycle. J. Mol. Biol. 366, 193–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Ranaivoson, F. M. et al. A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis. J. Mol. Biol. 377, 268–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ranaivoson, F. M. et al. Methionine sulfoxide reductase B displays a high level of flexibility. J. Mol. Biol. 394, 83–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lowther, W. T., Weissbach, H., Etienne, F., Brot, N. & Matthews, B. W. The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat. Struct. Biol. 9, 348–352 (2002).

    CAS  PubMed  Google Scholar 

  53. Mahawar, M., Tran, V., Sharp, J. S. & Maier, R. J. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J. Biol. Chem. 286, 19159–19169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benoit, S. L., Bayyareddy, K., Mahawar, M., Sharp, J. S. & Maier, R. J. Alkyl hydroperoxide reductase repair by Helicobacter pylori methionine sulfoxide reductase. J. Bacteriol. 195, 5396–5401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khor, H. K., Fisher, M. T. & Schoneich, C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J. Biol. Chem. 279, 19486–19493 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Abulimiti, A., Qiu, X., Chen, J., Liu, Y. & Chang, Z. Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem. Biophys. Res. Commun. 305, 87–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl Acad. Sci. USA 93, 15036–15040 (1996). This study proposes a theory in which methionine residues act as a shield against ROS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D. & Barras, F. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. EMBO J. 23, 1868–1877 (2004). This study reports the identification of the SRP54 homologue in bacteria as a target of the MsrAB system through the use of both biochemical and physiological approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luirink, J. et al. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13, 2289–2296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Leverrier, P., Vertommen, D. & Collet, J. F. Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 10, 771–784 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Depuydt, M., Messens, J. & Collet, J. F. How proteins form disulfide bonds. Antioxid. Redox Signal. 15, 49–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991). This study describes the identification of DsbA, a protein that catalyses the formation of disulfide bonds in the periplasm.

    Article  CAS  PubMed  Google Scholar 

  65. Bader, M., Muse, W., Ballou, D. P., Gassner, C. & Bardwell, J. C. Oxidative protein folding is driven by the electron transport system. Cell 98, 217–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Kadokura, H. & Beckwith, J. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138, 1164–1173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shevchik, V. E., Condemine, G. & Robert-Baudouy, J. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J. 13, 2007–2012 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dutton, R. J., Boyd, D., Berkmen, M. & Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl Acad. Sci. USA 105, 11933–11938 (2008). This study reveals that there is a bias for an even number of cysteine residues in proteins that are expressed in compartments in which the formation of disulfide bonds occurs. As such, counting the number of cysteine residues can be used to predict whether the formation of disulfide bonds occurs in a specific cellular compartment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Depuydt, M. et al. A periplasmic reducing system protects single cysteine residues from oxidation. Science 326, 1109–1111 (2009). This paper reports the function of DsbG in the protection of single cysteine residues from oxidation in the periplasm.

    Article  CAS  PubMed  Google Scholar 

  70. Mainardi, J. L. et al. Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the β-lactam imipenem. J. Biol. Chem. 282, 30414–30422 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Denoncin, K. et al. A new role for Escherichia coli DsbC protein in protection against oxidative stress. J. Biol. Chem. 289, 12356–12364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arts, I. S., Gennaris, A. & Collet, J. F. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett. 589, 1559–1568 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Rietsch, A., Bessette, P., Georgiou, G. & Beckwith, J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179, 6602–6608 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rietsch, A., Belin, D., Martin, N. & Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 13048–13053 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Katzen, F. & Beckwith, J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103, 769–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Williamson, J. A. et al. Structure and multistate function of the transmembrane electron transporter CcdA. Nat. Struct. Mol. Biol. 22, 809–814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Skaar, E. P. et al. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl Acad. Sci. USA 99, 10108–10113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Olry, A. et al. Characterization of the methionine sulfoxide reductase activities of PilB, a probable virulence factor from Neisseria meningitidis. J. Biol. Chem. 277, 12016–12022 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Brot, N. et al. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J. Biol. Chem. 281, 32668–32675 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Saleh, M. et al. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med. 5, 1852–1870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gennaris, A. et al. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature 528, 409–412 (2015). This study describes the identification of MsrPQ, which is a widely conserved enzymatic system that protects methionine residues from oxidation in the periplasm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brokx, S. J., Rothery, R. A., Zhang, G., Ng, D. P. & Weiner, J. H. Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44, 10339–10348 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Juillan-Binard, C. et al. A two-component NADPH oxidase (NOX)-like system in bacteria is involved in the electron transfer chain to the methionine sulfoxide reductase MsrP. J. Biol. Chem. 292, 2485–2494 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Loschi, L. et al. Structural and biochemical identification of a novel bacterial oxidoreductase. J. Biol. Chem. 279, 50391–50400 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Melnyk, R. A. et al. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. mBio 6, e00233–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vlamis-Gardikas, A., Potamitou, A., Zarivach, R., Hochman, A. & Holmgren, A. Characterization of Escherichia coli null mutants for glutaredoxin 2. J. Biol. Chem. 277, 10861–10868 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Kosower, N. S., Kosower, E. M., Wertheim, B. & Correa, W. S. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem. Biophys. Res. Commun. 37, 593–596 (1969).

    Article  CAS  PubMed  Google Scholar 

  88. Lin, K. et al. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog. 12, e1005675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Uziel, O., Borovok, I., Schreiber, R., Cohen, G. & Aharonowitz, Y. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186, 326–334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marteyn, B., Domain, F., Legrain, P., Chauvat, F. & Cassier-Chauvat, C. The thioredoxin reductase–glutaredoxins–ferredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803. Mol. Microbiol. 71, 520–532 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Pasternak, C., Assemat, K., Clement-Metral, J. D. & Klug, G. Thioredoxin is essential for Rhodobacter sphaeroides growth by aerobic and anaerobic respiration. Microbiology 143, 83–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Scharf, C. et al. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180, 1869–1877 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarro, F. & Florencio, F. J. The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth. Plant Physiol. 111, 1067–1075 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuhns, L. G., Wang, G. & Maier, R. J. Comparative roles of the two Helicobacter pylori thioredoxins in preventing macromolecule damage. Infect. Immun. 83, 2935–2943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Potter, A. J. et al. Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells. J. Infect. Dis. 199, 227–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kraemer, P. S. et al. Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect. Immun. 77, 232–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Rocha, E. R., Tzianabos, A. O. & Smith, C. J. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J. Bacteriol. 189, 8015–8023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ortenberg, R., Gon, S., Porat, A. & Beckwith, J. Interactions of glutaredoxins, ribonucleotide reductase, and components of the DNA replication system of Escherichia coli. Proc. Natl Acad. Sci. USA 101, 7439–7444 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Russel, M., Model, P. & Holmgren, A. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J. Bacteriol. 172, 1923–1929 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Toledano, M. B., Kumar, C., Le Moan, N., Spector, D. & Tacnet, F. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett. 581, 3598–3607 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Crooke, H. & Cole, J. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol. Microbiol. 15, 1139–1150 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Mavridou, D. A., Ferguson, S. J. & Stevens, J. M. The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli. FEBS Lett. 586, 1702–1707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Metheringham, R. et al. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol. Gen. Genet. 253, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  104. Beckett, C. S. et al. Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol. Microbiol. 38, 465–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, Y. W. & Kelly, D. J. Cytochrome c biogenesis in Campylobacter jejuni requires cytochrome c6 (CccA; Cj1153) to maintain apocytochrome cysteine thiols in a reduced state for haem attachment. Mol. Microbiol. 96, 1298–1317 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Braun, M. & Thony-Meyer, L. Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J. Bacteriol. 187, 5996–6004 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Page, M. D., Saunders, N. F. & Ferguson, S. J. Disruption of the Pseudomonas aeruginosa dipZ gene, encoding a putative protein-disulfide reductase, leads to partial pleiotropic deficiency in c-type cytochrome biogenesis. Microbiology 143, 3111–3122 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Hiniker, A., Collet, J. F. & Bardwell, J. C. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785–33791 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Missiakas, D., Schwager, F. & Raina, S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J. 14, 3415–3424 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leverrier, P. et al. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J. Biol. Chem. 286, 16734–16742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kumar, P., Sannigrahi, S., Scoullar, J., Kahler, C. M. & Tzeng, Y. L. Characterization of DsbD in Neisseria meningitidis. Mol. Microbiol. 79, 1557–1573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vertommen, D. et al. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol. Microbiol. 67, 336–349 (2008).

    CAS  PubMed  Google Scholar 

  113. Denoncin, K., Vertommen, D., Paek, E. & Collet, J. F. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD. J. Biol. Chem. 285, 29425–29433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Missiakas, D., Georgopoulos, C. & Raina, S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13, 2013–2020 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. An, R., Sreevatsan, S. & Grewal, P. S. Moraxella osloensis gene expression in the slug host Deroceras reticulatum. BMC Microbiol. 8, 19 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo, W. et al. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology 158, 505–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Vincent-Sealy, L. V., Thomas, J. D., Commander, P. & Salmond, G. P. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins. Microbiology 145, 1945–1958 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Zhao, C. et al. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect. Immun. 78, 3889–3897 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Denkel, L. A. et al. Methionine sulfoxide reductases are essential for virulence of Salmonella Typhimurium. PLoS ONE 6, e26974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dhandayuthapani, S., Blaylock, M. W., Bebear, C. M., Rasmussen, W. G. & Baseman, J. B. Peptide methionine sulfoxide reductase (MsrA) is a virulence determinant in Mycoplasma genitalium. J. Bacteriol. 183, 5645–5650 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vattanaviboon, P., Seeanukun, C., Whangsuk, W., Utamapongchai, S. & Mongkolsuk, S. Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J. Bacteriol. 187, 5831–5836 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moskovitz, J. et al. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J. Bacteriol. 177, 502–507 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Romsang, A., Atichartpongkul, S., Trinachartvanit, W., Vattanaviboon, P. & Mongkolsuk, S. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J. Bacteriol. 195, 3299–3308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Trivedi, R. N. et al. Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils. Immunobiology 220, 1322–1327 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Dhandayuthapani, S., Jagannath, C., Nino, C., Saikolappan, S. & Sasindran, S. J. Methionine sulfoxide reductase B (MsrB) of Mycobacterium smegmatis plays a limited role in resisting oxidative stress. Tuberculosis (Edinb.) 89 (Suppl. 1), S26–S32 (2009).

    Article  Google Scholar 

  126. Atack, J. M. & Kelly, D. J. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni. Microbiology 154, 2219–2230 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, W. L. et al. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol. Microbiol. 71, 583–593 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pericone, C. D., Overweg, K., Hermans, P. W. & Weiser, J. N. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68, 3990–3997 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hassouni, M. E., Chambost, J. P., Expert, D., Van Gijsegem, F. & Barras, F. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi. Proc. Natl Acad. Sci. USA 96, 887–892 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Das, K., De la Garza, G., Maffi, S., Saikolappan, S. & Dhandayuthapani, S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS ONE 7, e36247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Singh, V. K. et al. Significance of four methionine sulfoxide reductases in Staphylococcus aureus. PLoS ONE 10, e0117594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wizemann, T. M. et al. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens. Proc. Natl Acad. Sci. USA 93, 7985–7990 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Alamuri, P. & Maier, R. J. Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 53, 1397–1406 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Beloin, C. et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51, 659–674 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Hitchcock, A. et al. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Microbiology 156, 2994–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Chiarugi, P. & Cirri, P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28, 509–514 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Tanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H. & Gates, K. S. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid. Redox Signal. 15, 77–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  PubMed  Google Scholar 

  139. Mongkolsuk, S. & Helmann, J. D. Regulation of inducible peroxide stress responses. Mol. Microbiol. 45, 9–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Antelmann, H. & Helmann, J. D. Thiol-based redox switches and gene regulation. Antioxid. Redox Signal. 14, 1049–1063 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Storz, G. & Imlay, J. A. Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Gebendorfer, K. M. et al. Identification of a hypochlorite-specific transcription factor from Escherichia coli. J. Biol. Chem. 287, 6892–6903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Drazic, A. et al. Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl Acad. Sci. USA 110, 9493–9498 (2013). This study reports the first example of the activation of a regulatory protein through methionine oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Drazic, A. et al. Tetramers are the activation-competent species of the HOCl-specific transcription factor HypT. J. Biol. Chem. 289, 977–986 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the research groups of F.B. and J.F.C. for helpful discussions. A.G. is Chargée de Recherches and J.F.C. Maître de Recherche of the Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS) and an Investigator of the Fonds de la Recherche Fondamentale Stratégique (FRFS)-WELBIO. This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, the A*MIDEX initiative and Fondation Recherche Médicale to F.B., and by the European Research Council (FP7/2007–2013) ERC independent researcher starting grant (282335–Sulfenic), the WELBIO and by grants from the F.R.S.-FNRS to J.F.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Barras or Jean-François Collet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Aerobic environments

Environments that are characterized by the presence of free molecular oxygen (O2).

Univalent electron donors

Compounds that transfer electrons (one at a time) onto an electron acceptor.

Metal centres

Metal atoms that are required for the structure or catalytic action of certain proteins.

Dihydroflavin cofactors

(FADH2 cofactors). Reduced forms of flavin adenine dinucleotide (FAD), which is a covalently bound redox moiety that is required by certain oxidoreductases to exert their function.

Quinones

Organic compounds that are composed of a polar redox-active head group coupled to a lipid side chain that varies in both length and degree of saturation. Quinones primarily function as electron transporters.

Oxidants

Compounds that cause other molecules to lose electrons.

Oxidation

A process in which electrons are lost by a molecule.

Nucleophile

A chemical species that is attracted by a positive charge and is able to donate a pair of electrons.

pKa

The negative logarithm of the acid dissociation constant (pKa = −log Ka). pKa is a quantitative measure of the strength of an acid in solution; the lower the pKa value, the stronger the acid.

Deprotonation

The removal of a proton (a hydrogen cation (H+)) from an acid in an acid–base reaction. The species formed is the conjugate base of that acid.

Thiolate

A deprotonated form of a thiol functional group.

Electrophilic species

A chemical species that has affinity for electrons.

Low-molecular-weight thiols

Highly reactive non-protein compounds that contain thiol functional groups (–SH), such as glutathione (GSH), mycothiol or bacillithiol.

Diastereoisomeric forms

The forms adopted when a molecule has multiple chiral centres. Methionine sulfoxide (Met-O) contains two chiral centres: the α-carbon and the sulfur. Met-S-O and Met-R-O refer to the (S-) and (R-) configurations of the sulfur, respectively.

Oxidoreductases

Enzymes that catalyse electron transfer from a donor (reductant) to an acceptor (oxidant).

Reduction

A process in which electrons are gained by a molecule.

Mixed-disulfide

An intermolecular covalent bridge (–S–S–) formed between two thiol groups from two different proteins or peptides.

Iron–sulfur clusters

Inorganic prosthetic groups that are composed of iron and sulfur atoms, which can act as catalysts, redox sensors or structural elements.

Glutathione

A major redox buffer. Glutathione reduces disulfide bonds by acting as an electron donor. Once oxidized, glutathione can be reduced by glutathione reductase, using nicotinamide adenine dinucleotide phosphate (NADPH) as an electron donor. Glutathione is composed of a tripeptide of L-cysteine, L-glutamate and glycine. In its oxidized form, two glutathione tripeptides are connected by a disulfide bond.

Stereospecificity

A form of enzyme specificity, whereby an enzyme only catalyses its respective reaction if the substrate stereochemistry is correct.

Redox potential

The measure (in volts) of the affinity of a compound for electrons.

Oxidative stress

An imbalance between the production of oxidants, such as reactive oxygen species, and antioxidant defences

Cytochrome b

A haem-containing membrane protein found in prokaryotic and eukaryotic cells that is involved in electron transport.

Molybdopterin

A class of cofactors found in most molybdenum (Mo) and all tungsten (W) enzymes. Molybdopterin consists of a pyranopterin, which comprises two thiolates that function as ligands in molybdoenzymes and tungstoenzymes.

Two-component system

A molecular system that is used by bacterial cells to sense and respond to signals through a phosphorylation cascade from a membrane receptor to a response regulator.

Dithiothreitol

(DTT). A reducing agent that reduces disulfide bonds through a thiol–disulfide exchange reaction.

Rcs phosphorelay

A complex signalling cascade that is used by enterobacteria to detect stress in the outer membrane and in the peptidoglycan layer.

Cadmium

A non-redox-active metal that indirectly increases intracellular reactive oxygen species (ROS), primarily by binding to thiol groups, which leads to the inactivation of antioxidant defences, including scavenging enzymes and glutathione (GSH).

Paraquat

A redox-cycling organic compound that is widely used as a source of oxygen radicals in laboratory experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezraty, B., Gennaris, A., Barras, F. et al. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15, 385–396 (2017). https://doi.org/10.1038/nrmicro.2017.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.26

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology