Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Suffering in silence: the tolerance of DNA damage

Key Points

  • DNA-damage tolerance involves multiple mechanisms for the bypass of template damage in DNA that arrests high-fidelity DNA replication.

  • DNA-damage tolerance can occur either by direct DNA synthesis across sites of base damage (translesion DNA synthesis (TLS)) or by various mechanisms that obviate the need to replicate directly across the damage.

  • TLS is effected by specialized DNA polymerases. Prokaryotes contain two such enzymes, whereas higher eukaryotes have numerous specialized DNA polymerases.

  • The mechanism of TLS synthesis requires numerous polymerase-switching events. In higher eukaryotes, these switching events are thought to involve interactions with one another, with monoubiquitylated proliferating cell nuclear antigen (PCNA) and possibly with REV1 protein.

  • Several mouse strains have been generated that are defective in various specialized DNA polymerases.

  • Some specialized DNA polymerases are apparently involved in somatic hypermutation in the immune system.

  • DNA-damage tolerance by mechanisms other than TLS are known as post-replication recombinational repair and replication fork regression, the details of which remain to be clearly defined.

Abstract

When cells that are actively replicating DNA encounter sites of base damage or strand breaks, replication might stall or arrest. In this situation, cells rely on DNA-damage-tolerance mechanisms to bypass the damage effectively. One of these mechanisms, known as translesion DNA synthesis, is supported by specialized DNA polymerases that are able to catalyse nucleotide incorporation opposite lesions that cannot be negotiated by high-fidelity replicative polymerases. A second category of tolerance mechanism involves alternative replication strategies that obviate the need to replicate directly across sites of template-strand damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular responses to DNA damage.
Figure 2: Three-dimensional structures of a high-fidelity DNA polymerase and a specialized DNA polymerase.
Figure 3: A model for translesion DNA synthesis in prokaryotes.
Figure 4: A model of translesion DNA synthesis in eukaryotic cells.
Figure 5: Post-replication (gap-filling) repair and replication-fork regression.

Similar content being viewed by others

References

  1. Friedberg, E. C. et al. DNA Repair and Mutagenesis 2nd edn (ASM, Washington DC, USA, 2006). A recently revised comprehensive textbook on biological responses to DNA damage.

    Google Scholar 

  2. Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival and the genesis of mutations. Science 296, 1627–1630 (2002).

    CAS  PubMed  Google Scholar 

  3. Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17–50 (2002).

    CAS  PubMed  Google Scholar 

  4. Hübscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).

    PubMed  Google Scholar 

  5. Lehmann, A. R. Replication of damaged DNA in mammalian cells: new solutions to an old problem. Mutation Res. 509, 23–34 (2002).

    CAS  PubMed  Google Scholar 

  6. Pagès, V. & Fuchs, R. P. P. How DNA lesions are turned into mutations within cells. Oncogene 21, 8957–8966 (2002).

    PubMed  Google Scholar 

  7. Jansen, J. G. & de Wind, N. Biological functions of translesion synthesis proteins in vertebrates. DNA Repair 2, 1075–1085 (2003).

    CAS  PubMed  Google Scholar 

  8. Rattray, A. J. & Strathern, J. N. Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu. Rev. Genet. 37, 31–66 (2003).

    CAS  PubMed  Google Scholar 

  9. Friedberg, E. C., Lehmann, A. R. & Fuchs, R. P. P. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell 18, 499–505 (2005).

    CAS  PubMed  Google Scholar 

  10. Tippin, B., Pham, P. & Goodman, M. F. Error-prone replication for better or worse. Trends Microbiol. 12, 288–295 (2004).

    CAS  PubMed  Google Scholar 

  11. Bridges, B. A. Error-prone DNA repair and translesion synthesis: focus on the replication fork. DNA Repair 4, 618–634 (2005).

    CAS  PubMed  Google Scholar 

  12. Rupp, W. D. & Howard-Flanders, P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291–304 (1968). An historically important article that first identified what is now known as DNA-damage tolerance.

    CAS  PubMed  Google Scholar 

  13. Witkin, E. M. Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol. 20, 17–55 (1967).

    Google Scholar 

  14. Radman, M. in Molecular and Environmental Aspects of Mutagenesis 1st edn (eds Sherwood, P. L. F., Miller, M., Lawrence, C. & Tabor, H. W.) 128–142 (Charles C. Thomas, Springfield, IL, 1974). Another historically important paper that established a conceptual framework for understanding mutagenesis in bacterial cells exposed to DNA-damaging agents such as UV radiation.

    Google Scholar 

  15. Kato, T. & Shinoura, Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156, 121–131 (1977). The first report of genes outside the SOS system that are required for UV-irradiation-dependent mutagenesis in bacteria.

    CAS  PubMed  Google Scholar 

  16. Steinborn, G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol. Gen. Genet. 165, 87–93 (1978).

    CAS  PubMed  Google Scholar 

  17. Steinborn, G. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. II. Further evidence for a novel function in error-prone repair. Mol. Gen. Genet. 175, 203–208 (1979).

    CAS  PubMed  Google Scholar 

  18. Echols, H. & Goodman, M. F. Mutation induced by DNA damage: a many protein affair. Mutat. Res. 236, 301–311 (1990).

    CAS  PubMed  Google Scholar 

  19. Echols, H. & Goodman, M. F. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60, 477–551 (1991).

    CAS  PubMed  Google Scholar 

  20. Rajagopalan, M. et al. Activity of the purified mutagenesis proteins UmuC, UmuD′, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. Proc. Natl Acad. Sci. USA 89, 10777–10781 (1992).

    CAS  PubMed  Google Scholar 

  21. Tang, M. et al. Biochemical basis of SOS-mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD′2C mutagenic complex and RecA protein. Proc. Natl Acad. Sci. USA 95, 9755–9760 (1998).

    CAS  PubMed  Google Scholar 

  22. Tang, M. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).

    CAS  PubMed  Google Scholar 

  23. Reuven, N. B., Arad, G., Maor-Shoshani, A. & Livneh, Z. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and specialized for translesion synthesis. J. Biol. Chem. 274, 31763–31766 (1999).

    CAS  PubMed  Google Scholar 

  24. Wagner, J. et al. The dinB gene encodes a novel E. coli DNA polymerase, DNA Pol IV, involved in mutagenesis. Mol. Cell 4, 281–286 (1999). References 21–24 provide the first indications that there are specialized DNA polymerases in E. coli that are independent of the replicative machinery.

    CAS  PubMed  Google Scholar 

  25. McDonald, J., Levine, P. & Woodgate, R. The Saccharomyces cerevisiae RAD30 gene, and homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147, 1557–1568 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roush, A. A., Suarez, M., Friedberg, E. C., Radman, M. & Siede, W. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers radiation sensitivity and altered mutability. Mol. Gen. Genet. 257, 686–692 (1998). References 25 and 26 indicate that there are many specialized DNA polymerases in eukaryotes.

    CAS  PubMed  Google Scholar 

  27. Friedberg, E. C. & Gerlach, V. L. Novel DNA polymerases offer clues to the molecular basis of mutagenesis. Cell 98, 413–416 (1999).

    CAS  PubMed  Google Scholar 

  28. Ohmori, H. et al. The Y-family of DNA polymerases. Mol. Cell 8, 7–8 (2001).

    CAS  PubMed  Google Scholar 

  29. Napolitano, R., Janel-Bintz, R., Wagner, J. & Fuchs, R. P. P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19, 6259–6265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Friedberg, E. C., Fischhaber, P. L. & Kisker, C. Error-prone DNA polymerases: unexpected structures and the benefits of infidelity. Cell 107, 9–12 (2001).

    CAS  PubMed  Google Scholar 

  31. Yang, W. Damage repair DNA polymerases Y. Curr. Opin. Struct. Biol. 13, 23–30 (2003).

    CAS  PubMed  Google Scholar 

  32. Fleck, O. & Schår, P. Translesion DNA synthesis: little fingers teach tolerance. Curr. Biol. 14, R389–R391 (2004). References 30–32 review structural features of specialized DNA polymerases.

    CAS  PubMed  Google Scholar 

  33. Kunkel, T. A., Pavlov, Y. I. & Bebenek, K. Functions of human DNA polymerases η, κ and ι suggested by their properties, including fidelity with undamaged templates. DNA Repair 2, 135–149 (2003).

    CAS  PubMed  Google Scholar 

  34. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    CAS  PubMed  Google Scholar 

  35. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999). References 34 and 35 first described the association between Polη and xeroderma pigmentosum.

    CAS  PubMed  Google Scholar 

  36. McCulloch, S. D. et al. Preferential cis-syn thymine dimer bypass by DNA polymerase η occurs with biased frequency. Nature 428, 97–100 (2004).

    CAS  PubMed  Google Scholar 

  37. Masutani, C. et al. Xeroderma pigmentosum variant: from a human genetic disorder to a novel DNA polymerase. Cold Spring Harbor Symp. Quant. Biol. LXV, 71–80 (2000).

    Google Scholar 

  38. Lehmann, A. R. Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease. Gene 253, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  39. Avkin, S., Adar, S., Blander, G. & Livneh, Z. Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. Proc. Natl Acad. Sci. USA 99, 3764–3769 (2002).

    CAS  PubMed  Google Scholar 

  40. Avkin, S., Velasco-Miguel, S., Geacintov, N., Friedberg, E. C. & Livneh, Z. Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. J. Biol. Chem. 279, 53298–53305 (2004).

    CAS  PubMed  Google Scholar 

  41. Plosky, B. S. & Woodgate, R. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr. Opin. Genet. Dev. 14, 113–119 (2004).

    CAS  PubMed  Google Scholar 

  42. McCulloch, S. D. et al. Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res. 32, 4665–4675 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujii, S. & Fuchs, R. P. P. Defining the position of the switches between replicative and bypass DNA polymerases. EMBO J. 23, 4342–4352 (2004). Describes an in vitro system that supports polymerase switching in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wagner, J., Fujii, S., Gruz, P., Nohmi, T. & Fuchs, R. P. P. The β clamp targets DNA polymerase IV to DNA and strongly increases its processivity. EMBO Reports 1, 484–488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Becherel, O. J., Fuchs, R. P. P. & Wagner, J. Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair 1, 703–708 (2002).

    CAS  PubMed  Google Scholar 

  46. Fujii, S., Gasser, V. & Fuchs, R. P. P. The biochemical requirements of DNA polymerase V-mediated translesion synthesis revisited. J. Mol. Biol. 341, 405–417 (2004).

    CAS  PubMed  Google Scholar 

  47. Duzen, J. M., Walker, G. C. & Sutton, M. D. Identification of specific amino acid residues in the E. coli β processivity clamp involved in interactions with DNA polymerase III, UmuD and UmuD′. DNA Repair 3, 310–312 (2004).

    Google Scholar 

  48. Schlacher, K. et al. DNA polymerase V and RecA protein, a minimal mutasome. Mol. Cell 17, 561–572 (2005). Documents two distinct roles of RecA protein in its interaction with Pol V of E. coli.

    CAS  PubMed  Google Scholar 

  49. Kannouche, P. & Stary, A. Xeroderma pigmentosum variant and error-prone DNA polymerases. Biochimie 85, 1123–1132 (2003).

    CAS  PubMed  Google Scholar 

  50. Kannouche, P. Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004). Documents the requirement for monoubiquitylation of PCNA for its interaction with Polη in UV-irradiated human cells.

    CAS  PubMed  Google Scholar 

  51. Haracska, L. et al. Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA. Proc. Natl Acad. Sci. USA 98, 14256–14261 (2001).

    CAS  PubMed  Google Scholar 

  52. Gerlach, V. L., Feaver, W. J., Fischhaber, P. L. & Friedberg, E. C. Purification and characterization of polκ, a DNA polymerase encoded by the human DINB1 gene. J. Biol. Chem. 276, 92–98 (2001).

    CAS  PubMed  Google Scholar 

  53. Vidal, A. E. et al. Proliferating cell nuclear antigen-dependent coordination of the biological functions of human DNA polymerase ι. J. Biol. Chem. 279, 48360–48368 (2004).

    CAS  PubMed  Google Scholar 

  54. Kannouche, P. et al. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J. 21, 6246–6256 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Woodgate, R. Evolution of the two-step model of UV-mutagenesis. Mutation Res. 485, 83–92 (2001).

    CAS  PubMed  Google Scholar 

  56. Prakash, S. & Prakash, L. Translesion DNA synthesis in eukaryotes: a one-or two-polymerase affair. Genes Dev. 16, 1872–1883 (2002).

    CAS  PubMed  Google Scholar 

  57. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

    CAS  PubMed  Google Scholar 

  58. Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621–6630 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohashi, E. et al. Interaction of hREV1 with three human Y-family polymerases. Genes Cells 9, 523–531 (2004).

    CAS  PubMed  Google Scholar 

  60. Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase polη and REV1 protein. DNA Repair 3, 1503–1514 (2004). References 58–60 document the interaction of mammalian REV1 protein with numerous specialized polymerases.

    CAS  PubMed  Google Scholar 

  61. Lawrence, C. Cellular functions of DNA polymerase ζ and REV1 protein. Adv. Protein Chem. 69, 167–203 (2004). A comprehensive recent review of REV1 protein.

    CAS  PubMed  Google Scholar 

  62. Diaz, M. & Lawrence, C. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation. Trends Immunol. 26, 215–220 (2005).

    CAS  PubMed  Google Scholar 

  63. Martomo, S. A. et al. Different mutation signatures in DNA polymerase η- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc. Natl Acad. Sci. USA 102, 8656–8661 (2005).

    CAS  PubMed  Google Scholar 

  64. Delbos, F. et al. Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 201, 1191–1196 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McDonald, J. P. et al. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 198, 635–643 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bertocci, B. et al. Cutting edge: DNA polymerases μ and λ are dispensable for Ig gene hypermutation. J. Immunol. 168, 3702–3706 (2002).

    CAS  PubMed  Google Scholar 

  67. Kobayashi, Y. et al. Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol. Cell Biol. 22, 2769–2776 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bertocci, B., De Smet, A., Berek, C., Weill, J -C. & Reynaud, C -A. Immunoglobulin κ light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu. Immunity 19, 203–211 (2003).

    CAS  PubMed  Google Scholar 

  69. Lucas, D. et al. Polymerase μ is up-regulated during the T cell-dependent immune response and its deficiency alters developmental dynamics of spleen centroblasts. Eur. J. Immunol. 35, 1601–1611 (2005).

    CAS  PubMed  Google Scholar 

  70. Schenten, D. et al. DNA Polymerase κ deficiency does not affect somatic hypermutation in mice but sensitizes cells to UV radiation. Eur. J. Immunol. 32, 3152–3160 (2002).

    CAS  PubMed  Google Scholar 

  71. Ogi, T. et al. Polκ protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene Proc. Natl Acad. Sci USA 99, 15548–15553 (2002).

    CAS  PubMed  Google Scholar 

  72. Jansen, J. G. et al. The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res. 33, 356–365 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 419, 944–945 (2002).

    CAS  PubMed  Google Scholar 

  74. Shimizu, T. et al. Normal immunoglobulin gene somatic hypermutation in Polκ-Polι double-mutant mice. Immunol. Lett. 98, 259–264 (2005).

    CAS  PubMed  Google Scholar 

  75. Shimizu, T., Shinkai, Y., Ogi, T., Ohmori, H. & Azuma, T. The absence of DNA polymerase κ does not affect somatic hypermutation of the mouse immunoglobulin heavy chain gene. Immunol. Lett. 86, 265–270 (2003).

    CAS  PubMed  Google Scholar 

  76. Washington, M. T., Johnson, R. E., Prakash, l. & Prakash, S. human DINB1-encoded DNA polymerase k is a promiscuous extender of mispaired primer-termini. Proc. Natl Acad. Sci USA 99, 1910–1914 (2002).

    CAS  PubMed  Google Scholar 

  77. Haracska, L., Prakash, L. & Prakash, S. Role of DNA polymerase k as an extender in translesion synthesis. Proc. Natl Acad. Sci USA 99, 16000–16005 (2002).

    CAS  PubMed  Google Scholar 

  78. Fischhaber, P. L. et al. Human DNA polymerase κ bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. J. Biol. Chem. 277, 37604–37611 (2002).

    CAS  PubMed  Google Scholar 

  79. Velasco-Miguel, S. et al. Constitutive and regulated expression of the mouse DinB gene encoding DNA polymerase kappa. DNA Repair 2, 91–106 (2003). Documents the preferential expression of the Polk gene in the adrenal cortex of mice.

    CAS  PubMed  Google Scholar 

  80. Mizutani, A. et al. Extensive chromosomal breaks are induced by tamoxifen and estrogen in DNA repair-deficient cells. Cancer Res. 64, 3144–3147 (2004).

    CAS  PubMed  Google Scholar 

  81. Courcelle, J., Donaldson, J. R., Chow, K. H. & Courcelle, C. T. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299, 1064–1067 (2003).

    CAS  PubMed  Google Scholar 

  82. Courcelle, J., Ganesan, A. K. & Hanawalt, P. C. Therefore, what are recombination proteins there for? Bioessays 23, 463–470 (2001).

    CAS  PubMed  Google Scholar 

  83. Cox, M. M. Historical overview: searching for replication help in all of the rec places. Proc. Natl Acad. Sci. USA 98, 8173–8180 (2001).

    CAS  PubMed  Google Scholar 

  84. Cox, M. M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35, 53–82 (2001).

    CAS  PubMed  Google Scholar 

  85. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    CAS  PubMed  Google Scholar 

  86. Cox, M. M. The nonmutagenic repair of broken replication forks via recombination. Mutat. Res. 510, 107–120 (2002).

    CAS  PubMed  Google Scholar 

  87. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  88. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25, 156–165 (2000).

    CAS  PubMed  Google Scholar 

  89. Lusetti, S. L. & Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002).

    CAS  PubMed  Google Scholar 

  90. Marians, K. J. Replication and recombination intersect. Curr. Opin. Genet. Dev. 10, 151–156 (2000).

    CAS  PubMed  Google Scholar 

  91. McGlynn, P. & Lloyd, R. G. Genome stability and the processing of damaged replication forks by RecG. Trends Genet. 18, 413–419 (2002).

    CAS  PubMed  Google Scholar 

  92. Michel, B., Grompone, G. Flores, M. J. & Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl Acad. Sci. USA 101, 12783–12788 (2004).

    CAS  PubMed  Google Scholar 

  93. McGlynn, P. & Lloyd, R. G. Recombinational repair and restart of damaged replication forks. Nature Rev. Mol. Cell Biol. 3, 859–870 (2002). References 81–93 provide excellent overviews of DNA-damage-tolerance mechanisms other than TLS.

    CAS  Google Scholar 

  94. Berdichevsky, A., Izhar, L. & Livneh, Z. Error-free recombinational repair predominates over mutagenic translesion replication in E. coli. Mol. Cell 10, 917–924 (2002).

    CAS  PubMed  Google Scholar 

  95. Wang, T -C. Discontinuous or semi-discontinuous DNA replication in Escherichia coli. Bioessays 27, 633–636 (2005).

    CAS  PubMed  Google Scholar 

  96. Pagès, V. & Fuchs, R. P. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300, 1300–1303 (2003).

    PubMed  Google Scholar 

  97. Iyer, V. N. & Rupp, W. D. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim. Biophys. Acta. 288, 117–126 (1971).

    Google Scholar 

  98. Smith, K. C. & Meun, D. H. C. Repair of radiation-induced damage in Escherichia coli I. Effect of rec mutations on postreplication repair of damage due to ultraviolet radiation. J. Mol. Biol. 51, 459–472 (1970).

    CAS  PubMed  Google Scholar 

  99. Howard-Flanders, P., Theriot, L. & Stedeford, A. J. Some properties of excision-defective mutants of Escherichia coli K-12. J. Bacteriol. 97, 1134–1141 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Abraham, R. T. Cell cycle checkpoint signaling through the Atm and ASTR kinases. Genes Dev. 15, 2177–2196 (2001).

    CAS  PubMed  Google Scholar 

  101. Osborn, A. J., Elledge, S. J. & Zou, L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol. 12, 509–516 (2002).

    CAS  PubMed  Google Scholar 

  102. Carr, A. M. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair 1, 983–994 (2002).

    CAS  PubMed  Google Scholar 

  103. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    CAS  PubMed  Google Scholar 

  104. Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    CAS  PubMed  Google Scholar 

  105. Lupardus, P. J., Byun, T., Yee, M -C., Hekmat-Nejad, M. & Cimprich, K. A. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev. 16, 2327–2332 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 11, 1337–1347 (2003).

    CAS  PubMed  Google Scholar 

  107. Binz, S. K., Sheehan, A. M. & Wold, M. S. Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair 3, 1015–1024 (2004).

    CAS  PubMed  Google Scholar 

  108. Unsal-Kacmaz, K., Makhov, A. M., Griffith, J. D. & Sancar, A. Preferential binding of ATR protein to UV-damaged DNA. Proc. Natl Acad. Sci. USA 99, 6673–6678 (2002).

    CAS  PubMed  Google Scholar 

  109. Friedberg, E. C., Siede, W. & Cooper, A. J. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics Vol. 1 (eds Broach, J., Jones, E. & Pringle, J.) 147–192 (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1991).

    Google Scholar 

  110. Lawrence, C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 16, 253–258 (1994).

    CAS  PubMed  Google Scholar 

  111. Xiao, W., Chow, B., Broomfield, S. & Hanna, M. The Saccharomyces cerevisiae RAD6 epistasis group is composed of an error-prone and two error-free postreplication pathways. Genetics 155, 1633–1641 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jentsch, S., McGrath, J. P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes an ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987). The first demonstration that RAD6 protein is involved in the ubiquitin-conjugating pathway.

    CAS  PubMed  Google Scholar 

  113. Prakash, L. The RAD6 gene and protein of Saccharomyces cerevisiae. Ann. NY Acad. Sci. 726, 267–273 (1994).

    CAS  PubMed  Google Scholar 

  114. Sung, P., Prakash, S. & Prakash, L. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc. Natl Acad. Sci. USA 87, 2695–2699 (1990).

    CAS  PubMed  Google Scholar 

  115. Jones, J. S., Weber, S. & Prakash, L. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res. 16, 7119–7131 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Joazeiro, C. A. P. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    CAS  PubMed  Google Scholar 

  117. Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360–23365 (1997).

    CAS  PubMed  Google Scholar 

  118. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD-6 dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002). An important study documenting post-translational modifications of proteins that are required for post-replication repair.

    CAS  PubMed  Google Scholar 

  119. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  120. Brusky, J., Zhu, Y. & Xiao, W. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet. 37, 168–174 (2000).

    CAS  PubMed  Google Scholar 

  121. Xiao, W., Lin, S. L., Broomfield, S. Chow, B. L. & Wei, Y -F. The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) genes define a structurally and functionally conserved Ubc-like protein family. Nucleic Acids Res. 26, 3908–3914 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388–3397 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hochegger, H., Sonoda, E. & Takeda, S. Post-replication repair in chicken DT40 cells: translesion polymerases versus recombinases. Bioessays 26, 151–158 (2004).

    CAS  PubMed  Google Scholar 

  124. Watanabe, K. et al. Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886–3896 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790–2796 (2001).

    CAS  PubMed  Google Scholar 

  126. Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).

    CAS  PubMed  Google Scholar 

  127. Sandler, S. J. & Marians, K. J. Role of PriA in replication fork reactivation in Escherichia coli. J. Bacteriol. 182, 9–13 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wickner, S. & Hurwitz, J. Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. Proc. Natl Acad. Sci. USA 72, 3342–3346 (1975).

    CAS  PubMed  Google Scholar 

  129. Nurse, P., Zavitz, K. & Marians, K. Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response. J. Bacteriol. 173, 6686–6693 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kogoma, T., Cadwell, G. W., Barnard, K. G. & Asai, T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacteriol. 178, 1258–1264 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lovett, S. T. Filling the gaps in replication restart pathways. Mol. Cell 17, 751–759 (2005).

    CAS  PubMed  Google Scholar 

  132. Lambert, S., Watson, A., Sheedy, D. M, Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible replication fork barrier. Cell 121, 689–702 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Squires, P. Fischhaber, L. McDaniel, R. Schultz, N. Kosarek, G. Walker and W. Siede for critical review of the manuscript and helpful discussions. Work in my laboratory is supported by a research grant from the United States Public Health Service (USPHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Errol C. Friedberg.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

MMS2

POLH

Poli

Polk

Poll

Polm

RAD5

UBC13

umuC

umuD

Swiss-Prot

PCNA

PriA

PriC

RAD6

RAD18

RecA

REV1

FURTHER INFORMATION

E. coli genome and proteome database

Saccharomyces Genome Database

UCSC Genome Bioinformatics

Errol Friedberg's homepage

Glossary

SOS RESPONSE

A transcriptional response to DNA damage or arrested replication in prokaryotes, during which numerous repressed genes are derepressed, resulting in increased numbers of several proteins involved in various aspects of DNA repair and mutagenesis.

XERODERMA PIGMENTOSUM (XP)

A hereditary disease characterized by a marked predisposition to skin cancer due to either defective nucleotide excision repair or the absence of functional Polη.

NUCLEOTIDE EXCISION REPAIR

A mode of DNA repair during which damaged bases are excised from the genome as components of oligonucleotide fragments.

MONOUBIQUITYLATION

A process during which a single ubiquitin moiety is covalently bound to a particular lysine residue in a protein.

AP SITES

Sites of base loss in DNA, which results in the generation of apurinic or apyrimidinic regions in the genome.

BRCT MOTIF

A protein motif with homology to the C-terminal region of the BRCA1 tumour supressor protein.

EPISTASIS

The interaction of several gene products in a common biochemical pathway, usually defined by genetic analysis.

E2 ENZYME

An enzyme that accepts ubiquitin or a ubiquitin-like protein from an E1 enzyme and transfers it to the substrate, mostly using an E3 enzyme.

RING-FINGER DOMAIN

A protein domain that consists of two loops that are held together at their base by Cys and His residues that form a complex with two zinc ions. Many RING fingers function in protein degradation by facilitating protein ubiquitylation.

POLYUBIQUITYLATION

A process similar to monoubiquitylation in which a chain of several ubiquitin moieties are added to a different lysine residue in a protein.

PRIMOSOME

A complex of proteins, the role of which is to initiate DNA synthesis by de novo synthesis of an oligonucleotide RNA primer on a DNA template strand. A primosome is typically used to initiate synthesis at a replication origin or to re-initiate synthesis downstream of a stalled replication fork.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedberg, E. Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6, 943–953 (2005). https://doi.org/10.1038/nrm1781

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing