Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases

Key Points

  • The study of the genetics and the pathophysiology of immunodeficiencies has a long history of improving our understanding of basic immunological pathways.

  • Recent advances in laboratory diagnostics and sequencing have led to substantial advances in new aetiologies and pathways of immune diseases; some of these diseases have previously been described but others are newly identified.

  • Hypomorphic mutations in immune-related genes in humans result in disease phenotypes that are not predicted by null mutations in mice. Such findings highlight the differences between the mouse and human immune systems. These hypomorphic mutations also enable the study of the function of certain proteins in cell lineages that are normally absent in mice that have null mutations.

  • One example of the results of such investigations can be found in patients who have gene deficiencies that impair their immunity to Epstein–Barr virus. The study of such individuals led to the discovery of a role for magnesium as a second messenger in lymphocytes.

  • The study of a cohort of patients with familial cold urticaria led to the identification of phospholipase Cγ2 mutations, which could render cellular signalling hyporesponsive at body temperature but spontaneously active in the cold.

  • Patients with familial myelodysplasia and acute myeloid leukaemia, as well as patients who show increased susceptibility to a wide-range of infections, carry heterogeneous mutations in the transcription factor GATA-binding protein 2. These individuals provide an opportunity to study this transcription factor in the context of infection and oncogenesis.

Abstract

A recent surge in newly described primary immunodeficiencies (PIDs) has highlighted new physiological and pathophysiological pathways that affect the immune system. Furthermore, the study of individuals with PIDs has substantially improved our understanding of basic cellular and signalling pathways in host defence and immune regulation. Single-gene defects can lead to disease manifestations that range from extremely narrow infectious phenotypes to remarkably broad multisystem effects. Hypomorphic or hypermorphic gene mutations often occur in human diseases; when coupled with the fact that humans are exposed to naturally encountered antigens and pathogens, this helps to make the case that the study of immunological diseases in humans should be at the forefront of basic immunological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recently identified defects that impair T cell functions.
Figure 2: Recently identified defects that impair B cell functions.
Figure 3: New immunodeficiencies affecting the innate immune system.
Figure 4: Defects in immunity to Candida albicans.

Similar content being viewed by others

References

  1. Ochs, H. D. & Hitzig, W. H. History of primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 12, 577–587 (2012).

    CAS  PubMed  Google Scholar 

  2. Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    CAS  PubMed  Google Scholar 

  3. Casanova, J. L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, M. M. Immunology taught by humans. Sci. Transl. Med. 4, 117fs112 (2012).

    Article  CAS  Google Scholar 

  5. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanal, O. et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J. Clin. Immunol. 32, 698–708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jabara, H. H. et al. DOCK8 functions as an adaptor that links TLR–MyD88 signaling to B cell activation. Nature Immunol. 13, 612–620 (2012).

    Article  CAS  Google Scholar 

  8. Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Weller, S. et al. IgM+IgD+CD27+ B cells are markedly reduced in IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients. Blood 120, 4992–5001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, B. et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunol. 11, 836–845 (2010).

    Article  CAS  Google Scholar 

  11. Isnardi, I. et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 29, 746–757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Randall, K. L. et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 208, 2305–2320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Randall, K. L., Lambe, T., Goodnow, C. C. & Cornall, R. J. The essential role of DOCK8 in humoral immunity. Dis. Markers 29, 141–150 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizesko, M. C. et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 131, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harada, Y. et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119, 4451–4461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mueller, P. et al. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nature Immunol. 9, 424–431 (2008).

    Article  CAS  Google Scholar 

  17. Shiow, L. R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nature Immunol. 9, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  18. Moshous, D. et al. Whole-exome sequencing identifies coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J. Allergy Clin. Immunol. 131, 1594–1603.e9 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nehme, N. T. et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119, 3458–3468 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Abdollahpour, H. et al. The phenotype of human STK4 deficiency. Blood 119, 3450–3457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crequer, A. et al. Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS ONE 7, e44010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mou, F. et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J. Exp. Med. 209, 741–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palendira, U. et al. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol. 9, e1001187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palendira, U. et al. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J. Exp. Med. 209, 913–924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, F. Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011). This study is a prime example of the discovery of a novel biological pathway. A previously unrecognized role for magnesium as a second messenger for signalling was identified through the study of a discrete population of immunodeficient patients

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niehues, T., Perez-Becker, R. & Schuetz, C. More than just SCID — the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin. Immunol. 135, 183–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Omenn, G. S. Familial reticuloendotheliosis with eosinophilia. N. Engl. J. Med. 273, 427–432 (1965).

    Article  CAS  PubMed  Google Scholar 

  30. Schuetz, C. et al. An immunodeficiency disease with RAG mutations and granulomas. N. Engl. J. Med. 358, 2030–2038 (2008). This is the first report to show that hypomorphic mutations in RAG genes could lead to phenotypes that are quite distinct from Omenn syndrome or SCID. These patients provide the opportunity to study the roles of RAG proteins in human V(D)J gene recombination, the affect they have on TCR repertoires and a new pathophysiological role for RAG function in granulomatous disease.

    Article  CAS  PubMed  Google Scholar 

  31. De Ravin, S. S. et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood 116, 1263–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Avila, E. M. et al. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics 126, e1248–e1252 (2010).

    Article  PubMed  Google Scholar 

  33. Kuijpers, T. W. et al. Idiopathic CD4+ T lymphopenia without autoimmunity or granulomatous disease in the slipstream of RAG mutations. Blood 117, 5892–5896 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. de Villartay, J. P. et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J. Clin. Invest. 115, 3291–3299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marrella, V. et al. A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. J. Clin. Invest. 117, 1260–1269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walter, J. E. et al. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J. Exp. Med. 207, 1541–1554 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cassani, B. et al. Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the Rag2 mouse model of Omenn syndrome. J. Exp. Med. 207, 1525–1540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Milner, J. D., Ward, J. M., Keane-Myers, A. & Paul, W. E. Lymphopenic mice reconstituted with limited repertoire T cells develop severe, multiorgan, Th2-associated inflammatory disease. Proc. Natl Acad. Sci. USA 104, 576–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rucci, F. et al. Abnormalities of thymic stroma may contribute to immune dysregulation in murine models of leaky severe combined immunodeficiency. Front. Immunol. http://dx.doi.org/10.3389/fimmu.2011.00015 (2013).

  40. Conley, M. E. et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J. Exp. Med. 209, 463–470 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genet. 26, 379–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Datta, S. & Milner, J. D. Altered T-cell receptor signaling in the pathogenesis of allergic disease. J. Allergy Clin. Immunol. 127, 351–354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gandhi, C., Healy, C., Wanderer, A. A. & Hoffman, H. M. Familial atypical cold urticaria: description of a new hereditary disease. J. Allergy Clin. Immunol. 124, 1245–1250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ombrello, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, D. et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25–35 (2000).

    Article  PubMed  Google Scholar 

  46. Yu, P. et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca2+ entry. Immunity 22, 451–465 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Abe, K. et al. A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase Cγ2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model. Arthritis Rheum. 63, 1301–1311 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Freeman, A. F. et al. Coronary artery abnormalities in Hyper-IgE syndrome. J. Clin. Immunol. 31, 338–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fairchild, K. D., Singh, I. S., Carter, H. C., Hester, L. & Hasday, J. D. Hypothermia enhances phosphorylation of IκB kinase and prolongs nuclear localization of NF-κB in lipopolysaccharide-activated macrophages. Am. J. Physiol. Cell Physiol. 289, C1114–C1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Q. et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713–720 (2012). References 44 and 50 show the remarkable complexity and the diversity of cellular and clinical phenotypes, including allergy, immunodeficiency and autoinflammation, which emerge from two different types of gain-of-function mutations in PLCG2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012). Using induced pluripotent stem cells, this study shows that the increased susceptibility to HSV-1 encephalitis that occurs in patients with defects in TLR3 is due to intrinsic defects in innate-sensing mechanisms in central nervous system-resident cells, including neurons and oligodendrocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vinh, D. C. et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115, 1519–1529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsu, A. P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ostergaard, P. et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nature Genet. 43, 929–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Hahn, C. N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nature Genet. 43, 1012–1017 (2011). References 60, 62 and 63 provide examples of multiple discrete phenotypes that arise from mutations in a single gene. These studies show how defects in a single transcription factor can lead to myeloid dysplasia and defective host defence.

    Article  CAS  PubMed  Google Scholar 

  64. Rodrigues, N. P. et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106, 477–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Vicente, C. et al. Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia 26, 550–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, S. J. et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 105, 2076–2081 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Johnson, K. D. et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J. Clin. Invest. 122, 3692–3704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mace, E. M. et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56bright subset. Blood 121, 2669–2677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cuellar-Rodriguez, J. et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood 118, 3715–3720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marquis, J. F. et al. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 7, e1002097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen, Z. & O'Shea, J. J. Th17 cells: a new fate for differentiating helper T cells. Immunol. Res. 41, 87–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Renner, E. D. et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122, 181–187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010). References 81–83 were the first to highlight the remarkably limited infectious phenotype (that is, increased susceptibility to chronic mucocutaneous candidiasis) that occurs in patients with focal defects in IL-17-mediated signalling. By contrast, IL-17 has been shown to protect against a wider range of infections in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Holland, S. M. et al. STAT3 Mutations in the Hyper-IgE Syndrome. N. Engl. J. Med. 357, 1608–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Speckmann, C. et al. Reduced memory B cells in patients with hyper IgE syndrome. Clin. Immunol. 129, 448–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Avery, D. T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31, 158–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kida, H. et al. GP130-STAT3 regulates epithelial cell migration and is required for repair of the bronchiolar epithelium. Am. J. Pathol. 172, 1542–1554 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kovacic, J. C. et al. Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J. Clin. Invest. 120, 303–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Chandesris, M. O. et al. Frequent and widespread vascular abnormalities in human signal transducer and activator of transcription 3 deficiency. Circ. Cardiovasc. Genet. 5, 25–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Nieminen, P. et al. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet. 89, 67–81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Boisson-Dupuis, S. et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr. Opin. Immunol. 24, 364–378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Smeekens, S. P. et al. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS ONE 6, e29248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sampaio, E. P. et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J. Allergy Clin. Immunol. 131, 1624–1634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Uzel, G. et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131, 1611–1623.e3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romberg, N. et al. Gain-of-function STAT1 mutations are associated with PD-L1 overexpression and a defect in B-cell survival. J. Allergy Clin. Immunol. 131, 1691–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, X. P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunol. 12, 247–254 (2011).

    Article  CAS  Google Scholar 

  109. Yoshimura, A., Nishinakamura, H., Matsumura, Y. & Hanada, T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res. Ther. 7, 100–110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grimbacher, B. et al. Hyper-IgE syndrome with recurrent infections — an autosomal dominant multisystem disorder. N. Engl. J. Med. 340, 692–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Rezaei, N., Notarangelo, L. & Aghamohammadi, A. Primary Immunodeficiency Diseases: Definition, Diagnosis, and Management 59–64 (Springer, 2008).

    Book  Google Scholar 

  112. Lean, I. S., McDonald, V. & Pollok, R. C. The role of cytokines in the pathogenesis of Cryptosporidium infection. Curr. Opin. Infect. Dis. 15, 229–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kotlarz, D. et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J. Exp. Med. 210, 433–443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Recher, M. et al. IL-21 is the primary common γ chain-binding cytokine required for human B-cell differentiation in vivo. Blood 118, 6824–6835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Totero, D. et al. Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood 107, 3708–3715 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Glocker, E. O. et al. Infant colitis — it's in the genes. Lancet 376, 1272 (2010).

    Article  PubMed  Google Scholar 

  118. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Engelhardt, K. R. et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 131, 825–830 (2012). This study shows that colitis can be a monogenic disease and can be cured by bone marrow transplantation. It highlights the important role of IL-10 signalling in haematopoietic cells in preventing intestinal inflammation.

    Article  CAS  PubMed  Google Scholar 

  120. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sayos, J. et al.The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Chaigne-Delalande, B. et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341, 186–191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Division of Intramural Research, US National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua D. Milner or Steven M. Holland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

T cell receptor excision circles

(TRECs). DNA episomes that are normally produced during the thymic maturation of T cells, specifically during recombination of the T cell receptor genes.

Wiskott–Aldrich syndrome protein

(WASP). An actin regulator that is involved in the formation of the immunological synapse. Mutations in WASP cause a life-threatening X-linked immunodeficiency that is characterized by thrombocytopaenia with small platelets, eczema, recurrent infections and an increased incidence of autoimmune manifestations and malignancies.

Recombinase activating gene 1

(RAG1). RAG1 and RAG2 encode the RAG proteins, which are involved in creating the double-stranded DNA breaks that are required to produce the rearranged gene segments encoding the complete protein chains of B cell and T cell receptors.

Mycobacterium avium complex

A complex of mycobacterial species that are ubiquitous in the environment and that can cause disease in immunocompromised individuals.

Immunoscope assays

Techniques used to assess the diversity of the T cell receptor (TCR) repertoire in a population of T cells. They use a reverse transcription PCR-based approach to assess the length of the complementarity determining region 3 of the variable genes encoding the TCR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milner, J., Holland, S. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol 13, 635–648 (2013). https://doi.org/10.1038/nri3493

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing