Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing invariant NKT cells in vaccination strategies

Key Points

  • Natural killer T (NKT) cells are lymphocytes that express a T-cell receptor (TCR) and markers of NK cells. Unlike conventional T cells, NKT cells recognize glycolipids that are presented in association with non-polymorphic CD1d molecules.

  • Most NKT cells (invariant NKT cells; iNKT cells) express a semi-invariant TCR α-chain: Vα14–Jα18 in mice and Vα24–Jα18 in humans. This is paired with a limited number of β-chains: Vβ11 in humans and Vβ2, Vβ7 or Vβ8 in mice.

  • iNKT cells can be activated by either endogenous glycosphingolipids or by exogenous microbial ligands. iNKT-cell activation through TCR stimulation can be enhanced by inflammatory cytokines that are secreted by antigen-presenting cells (APCs).

  • iNKT-cell activation results in TCR downregulation, proliferation and secretion of T helper 1 (TH1)- and (TH2)-type cytokines. Activated iNKT cells induce dendritic cell (DC) and B-cell maturation as well as NK-cell activation, ultimately bridging the innate and adaptive arms of the immune response.

  • iNKT cells regulate various immune responses, including tumour immunosurveillance, autoimmunity and the response to several microbial pathogens (bacteria, viruses, fungi and parasites).

  • iNKT-cell activation can be manipulated both in vitro and in vivo by using synthetic agonists (such as α-galactosylceramide) that have different binding affinities. Co-injection of iNKT-cell agonists and model antigens results in the expansion of antigen-specific B-cell and T-cell responses, and this has prompted the use of NKT-cell agonists as vaccine adjuvants in the clinical setting.

Abstract

To optimize vaccination strategies, it is important to use protocols that can 'jump-start' immune responses by harnessing cells of the innate immune system to assist the expansion of antigen-specific B and T cells. In this Review, we discuss the evidence indicating that invariant natural killer T (iNKT) cells can positively modulate dendritic cells and B cells, and that their pharmacological activation in the presence of antigenic proteins can enhance antigen-specific B- and T-cell responses. In addition, we describe structural and kinetic analyses that assist in the design of optimal iNKT-cell agonists that could be used in the clinical setting as vaccine adjuvants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural killer T cells interact with and modulate the function of many different cell types.
Figure 2: Examples of invariant-natural-killer-T-cell agonists.
Figure 3: Structural features of the interactions between the T-cell receptors of invariant natural killer T cells and lipid–CD1d complexes.

Similar content being viewed by others

References

  1. Donnelly, J. J., Wahren, B. & Liu, M. A. DNA vaccines: progress and challenges. J. Immunol. 175, 633–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hanke, T., Goonetilleke, N., McMichael, A. J. & Dorrell, L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J. Gen. Virol. 88, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, C. L et al. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int. J. Cancer 113, 259–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey, D. I. & Berzins, S. P. Control points in NKT-cell development. Nature Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  Google Scholar 

  5. Matsuda, J. L., Mallevaey, T., Scott-Browne, J. & Gapin, L. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20, 358–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunol. 7, 978–986 (2006).

    Article  CAS  Google Scholar 

  7. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Mattner, J. et al. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3, 304–315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sriram, V., Du, W., Gervay-Hague, J. & Brutkiewicz, R. R. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35, 1692–1701 (2005). References 6–8 and 10 show for the first time that most iNKT cells are activated by glycosphingolipid and diacylglycerol of bacterial origin.

    Article  CAS  PubMed  Google Scholar 

  11. Kinjo, Y. et al. Natural sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem. Biol. 15, 654–664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amprey, J. L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895–904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA 101, 10685–10690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nature Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  15. Paget, C. et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl Acad. Sci. USA 104, 20490–20495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagarajan, N. A. & Kronenberg, M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J. Immunol. 178, 2706–2713 (2007). References 14–17 describe the different modes of activation of iNKT cells: direct (refs 15, 16 ), indirect (ref. 14 ) and CD1d independent (ref. 17).

    Article  CAS  PubMed  Google Scholar 

  18. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Morita, M. et al. Structure–activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Savage, P. B., Teyton, L. & Bendelac, A. Glycolipids for natural killer T cells. Chem. Soc. Rev. 35, 771–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, S. et al. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J. Clin. Invest. 118, 2301–2315 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Parekh, V. V. et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115, 2572–2583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uldrich, A. P. et al. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J. Immunol. 175, 3092–3101 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy, C. et al. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204, 1131–1144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Silk, J. et al. Non-glycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J. Immunol. 180, 6452–6456 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowe, N. Y., Smyth, M. J. & Godfrey, D. I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196, 119–127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carnaud, C. et al. Cutting Edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  29. Hayakawa, Y. et al. IFN-γ-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, α-galactosylceramide. Blood 100, 1728–1733 (2002).

    CAS  PubMed  Google Scholar 

  30. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest. 13 Nov 2008 (doi: 10.1172/JCI36264). This work highlights a new role for iNKT cells that is based on their ability to relieve the suppressive activity of MDSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Renukaradhya, G. J. et al. Type I NKT cells protect (and type II NKT cells suppress) the host's innate antitumor immune response to a B-cell lymphoma. Blood 111, 5637–5645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spada, F. M., Koezuka, Y. & Porcelli, S. A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vincent, M. S. et al. CD1-dependent dendritic cell instruction. Nature Immunol. 3, 1163–1168 (2002).

    Article  CAS  Google Scholar 

  34. Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hermans, I. F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171, 5140–5147 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R. M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003). References 35–37 show that co-injection of α-GalCer with antigenic proteins increases antigen-specific B- and T-cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silk, J. D. et al. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J. Clin. Invest. 114, 1800–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stober, D., Jomantaite, I., Schirmbeck, R. & Reimann, J. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J. Immunol. 170, 2540–2548 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Taraban, V. Y. et al. Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J. Immunol. 180, 4615–4620 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Zaini, J. et al. OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J. Clin. Invest. 117, 3330–3338 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hermans, I. F. et al. Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J. Immunol. 178, 2721–2729 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  44. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galli, G. et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl Acad. Sci. USA 104, 3984–3989 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA 105, 8345–8350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leadbetter, E. A. et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl Acad. Sci. USA 105, 8339–8344 (2008). References 45–47 describe the ability of iNKT cells to directly provide help to B cells. References 46 and 47 describe two new protocols to promote antibody responses in vivo by recruiting iNKT cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R. M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nature Immunol. 3, 867–874 (2002).

    Article  CAS  Google Scholar 

  49. Schmieg, J., Yang, G., Franck, R. W., Van Rooijen, N. & Tsuji, M. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc. Natl Acad. Sci. USA 102, 1127–1132 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko, S. Y. et al. α-galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J. Immunol. 175, 3309–3317 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Kamijuku, H. et al. Mechanism of NKT cell activation by intranasal coadministration of α-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol. 1, 208–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Chung, Y., Chang, W. S., Kim, S. & Kang, C. Y. NKT cell ligand α-galactosylceramide blocks the induction of oral tolerance by triggering dendritic cell maturation. Eur. J. Immunol. 34, 2471–2479 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, Y. et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, α-galactosylceramide. Vaccine 26, 1807–1816 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gabrilovich, D. I. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crowe, N. Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171, 4020–4027 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wilson, M. T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl Acad. Sci. USA 100, 10913–10918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harada, M. et al. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int. Immunol. 16, 241–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Coquet, J. M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4–NK1.1–NKT cell population. Proc. Natl Acad. Sci. USA 105, 11287–11292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, Y. J. et al. Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl Acad. Sci. USA 104, 10299–10304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bezbradica, J. S. et al. Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J. Immunol. 174, 4696–4705 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Yu, K. O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gadola, S. D. et al. Structure and binding kinetics of three different human CD1d-α-galactosylceramide-specific T cell receptors. J. Exp. Med. 203, 699–710 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sidobre, S. et al. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl Acad. Sci. USA 101, 12254–12259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chiba, A., Dascher, C. C., Besra, G. S. & Brenner, M. B. Rapid NKT cell responses are self-terminating during the course of microbial infection. J. Immunol. 181, 2292–2302 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Ota, T. et al. IFN-γ-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood 106, 184–192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chang, D. H. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 201, 1503–1517 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nature Immunol. 6, 819–826 (2005).

    Article  CAS  Google Scholar 

  71. Zajonc, D. M. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nature Immunol. 6, 810–818 (2005).

    Article  CAS  Google Scholar 

  72. Borg, N. A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Godfrey, D. I., Rossjohn, J. & McCluskey, J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity 28, 304–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, D. et al. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc. Natl Acad. Sci. USA 103, 3972–3977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zajonc, D. M., Savage, P. B., Bendelac, A., Wilson, I. A. & Teyton, L. Crystal structures of mouse CD1d–iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J. Mol. Biol. 377, 1104–1116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scott-Browne, J. P. et al. Germline encoded recognition of diverse glycolipids by NKT cells. Nature Immunol. 8, 1105–1113 (2007).

    Article  CAS  Google Scholar 

  77. Wun, K. S. et al. A minimal binding footprint on CD1d–glycolipid is a basis for selection of the unique human NKT TCR. J. Exp. Med. 205, 939–949 (2008). References 72, 76 and 77 describe the unique model of antigen recognition by the iNKT-cell TCR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128 (1998).

    CAS  PubMed  Google Scholar 

  79. Naidenko, O. V. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mouse and human CD1d molecules. J. Exp. Med. 190, 1069–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113, 1631–1640 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goff, R. D. et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126, 13602–13603 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Stanic, A. K. et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor. J. Immunol. 171, 4539–4551 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Denkberg, G. et al. Phage display-derived recombinant antibodies with TCR-like specificity against α-galactosylceramide and its analogues in complex with human CD1d molecules. Eur. J. Immunol. 38, 829–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Yu, K. O. et al. Production and characterization of monoclonal antibodies against complexes of the NKT cell ligand α-galactosylceramide bound to mouse CD1d. J. Immunol. Methods 323, 11–23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Miyake, S. & Yamamura, T. NKT cells and autoimmune diseases: unraveling the complexity. Curr. Top. Microbiol. Immunol. 314, 251–267 (2007).

    CAS  PubMed  Google Scholar 

  86. Yoshimoto, T., Bendelac, A., Watson, C., Hu-Li, J. & Paul, W. E. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 270, 1845–1847 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Fujii, S. et al. Glycolipid α-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc. Natl Acad. Sci. USA 103, 11252–11257 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ortaldo, J. R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Parekh, V. V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Van Kaer, L. α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nature Rev. Immunol. 5, 31–42 (2005).

    Article  CAS  Google Scholar 

  91. Giaccone, G. et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709 (2002).

    CAS  PubMed  Google Scholar 

  92. Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Ishikawa, A. et al. A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11, 1910–1917 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Uchida, T. et al. Phase I study of α-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol. Immunother. 57, 337–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    Article  CAS  Google Scholar 

  96. Motohashi, S. et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Stirnemann, K. et al. Sustained activation and tumor targeting of NKT cells using a CD1d–anti-HER2–scFv fusion protein induce antitumor effects in mice. J. Clin. Invest. 118, 994–1005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what's in a name? Nature Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  Google Scholar 

  99. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karadimitris, A. et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gumperz, J. E., Miyake, S., Yamamura, T. & Brenner, M. B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, P. T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, T. Y. et al. Distinct subsets of human invariant NKT cells differentially regulate T helper responses via dendritic cells. Eur. J. Immunol. 38, 1012–1023 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Crowe, N. Y. et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202, 1279–1288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McNab, F. W. et al. Peripheral NK1.1 NKT cells are mature and functionally distinct from their thymic counterparts. J. Immunol. 179, 6630–6637 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Rachitskaya, A. V. et al. Cutting Edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–5171 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Michel, M. L. et al. Identification of an IL-17-producing NK1.1negiNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoshiga, Y. et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int. J. Mol. Med. 22, 369–374 (2008).

    CAS  PubMed  Google Scholar 

  110. Kim, C. H., Johnston, B. & Butcher, E. C. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V α24+Vβ11+ NKT cell subsets with distinct cytokine-producing capacity. Blood 100, 11–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Thomas, S. Y. et al. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 171, 2571–2580 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Johnston, B., Kim, C. H., Soler, D., Emoto, M. & Butcher, E. C. Differential chemokine responses and homing patterns of murine TCR αβ NKT cell subsets. J. Immunol. 171, 2960–2969 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Stanic, A. K. et al. Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc. Natl Acad. Sci. USA 100, 1849–1854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Silk, J. D., Salio, M., Brown, J., Jones, E. Y. & Cerundolo, V. Structural and functional aspects of lipid binding by CD1 molecules. Annu. Rev. Cell Dev. Biol. 24, 369–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl Acad. Sci. USA 104, 5977–5982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Speak, A. O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl Acad. Sci. USA 104, 5971–5976 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 6, e172 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Li, Y. et al. Sensitive detection of isoglobo and globo series tetraglycosylceramides in human thymus by ion trap mass spectrometry. Glycobiology 18, 158–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gumperz, J. E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Park, J. E. et al. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand. Immunology 123, 145–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Berzofsky, J. A. & Terabe, M. NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J. Immunol. 180, 3627–3635 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nature Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  127. Chen, J. L. et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J. Exp. Med. 201, 1243–1255 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose data we have been unable to cite owing to space limitations. We thank A. Stock for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Cerundolo.

Related links

Related links

FURTHER INFORMATION

Vincenzo Cerundolo's homepage

Glossary

Prime–boost vaccination

Repeated immunizations that are administered when a single application of a vaccine is insufficient, using the same vaccine preparation (homologous prime–boost) or using different vaccine preparations (heterologous prime–boost) to sequentially stimulate a stronger immune response. Prior exposure to one vaccine strain can elicit antibody and T-cell responses to shared epitopes following exposure to a second vaccine strain, increasing the efficacy of heterologous prime–boost regimens.

B16 melanoma

A widely used experimental mouse melanoma. B16 melanoma is poorly immunogenic and therefore is difficult to eliminate. Largely because of this, B16 melanoma is a good model for testing cancer immunotherapies.

Cytokine storm

A strong systemic immune response that results in the release of high levels of inflammatory mediators (such as cytokines, oxygen free radicals and coagulation factors). Both pro-inflammatory cytokines (such as tumour-necrosis factor, interleukin-1 (IL-1) and IL-6) and anti-inflammatory cytokines (such as IL-10 and IL-1 receptor antagonist) are increased in the serum of patients experiencing a cytokine storm.

T-cell anergy

A state of T-cell unresponsiveness to stimulation with antigen. T-cell anergy can be induced by stimulation with a large amount of specific antigen in the absence of the engagement of co-stimulatory molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerundolo, V., Silk, J., Masri, S. et al. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9, 28–38 (2009). https://doi.org/10.1038/nri2451

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing