Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The stem-cell niche theory: lessons from flies

Key Points

  • A stem-cell niche is a restricted locale in an organ that supports the self-renewing division of stem cells and so prevents them from differentiating.

  • Cap and terminal filament cells and hub cells constitute the stem-cell niche in the fly ovary and testis, respectively.

  • Both ovarian and testicular stem-cell niches are dual-functional niches that emanate signals that are essential for the maintenance of both germline and somatic stem cells.

  • The ovarian niche generates several signalling pathways, including the Decapentaplegic (Dpp) and female sterile (1) Yb (Yb)/Piwi/Hedgehog (Hh)-mediated pathways, which act in parallel to maintain germline stem cells.

  • The Yb/Piwi/Hh-mediated pathway bifurcates downstream of Yb, with the Piwi and Hh branches mainly responsible for the maintenance of germline and somatic stem cells, respectively.

  • Cell adhesions through adherens junctions anchor both germline and somatic stem cells to the niche.

  • The testicular niche generates the Unpaired ligand that is essential for the self-renewal of both germline and somatic stem cells.

  • In contrast to its oogenic function, the Dpp pathway functions to restrict the proliferation of gonialblasts and spermatogonia in males. Epidermal growth factor receptor and Raf also have this function.

  • The organization and signalling pathways of the fly niches provide guiding principles for studying stem-cell niches in mammalian systems.

Abstract

Stem cells are characterized by their ability to self-renew and to produce numerous differentiated cell types, and are directly responsible for generating and maintaining tissues and organs. This property has long been attributed to the instructive signals that stem cells receive from their microenvironment — the so-called 'stem-cell niche'. Studies of stem cells in the Drosophila gonad have yielded much exciting insight into the structure of the niche and the signalling pathways that it produces to regulate the self-renewal of stem cells. These findings are illuminating our understanding of the self-renewing mechanisms of tissue stem cells in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic signalling pathways in the Drosophila ovarian stem-cell niche.
Figure 2: Germline and somatic stem cells and their niches in the Drosophila testis.
Figure 3: Somatic signalling pathways in the Drosophila testicular stem-cell niche.

Similar content being viewed by others

References

  1. Weissman, I. L., Anderson, D. J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell. Dev. Biol. 17, 387–403 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Benfey, P. N. A tale of two kingdoms. Curr. Biol. 9, R171–R172 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, E. H. & King, R. C. Oogonial and spermatogonial differentiation within a mosaic gonad of Drosophila melanogaster. Growth 26, 53–70 (1962).

    CAS  PubMed  Google Scholar 

  5. Wieschaus, E. & Szabad, J. The development and function of the female germline in Drosophila melanogaster, a cell lineage study. Dev. Biol. 68, 29–46 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, H. & Spradling, A. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140–152 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Drummond-Barbosa, D. & Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. King, F. J. & Lin, H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development 126, 1833–1844 (1999).

    CAS  PubMed  Google Scholar 

  9. King, F. J., Szakmary, A., Cox, D. N. & Lin, H. Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol. Cell 7, 497–508 (2001). References 8 and 9 report the first evidence that terminal filament and cap cells are essential for the maintenance of germline stem cells. Reference 9 is the first study to reveal how a common niche regulates the division of both germline and somatic stem cells.

    Article  CAS  PubMed  Google Scholar 

  10. Forbes, A. J., Lin, H., Ingham, P. W. & Spradling, A. C. hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122, 1125–1135 (1996). This study indicates, for the first time, the possible existence of a signalling pathway that regulates stem cells in Drosophila.

    CAS  PubMed  Google Scholar 

  11. Forbes, A. J., Spradling, A. C., Ingham, P. W. & Lin, H. The role of segment polarity genes during early oogenesis in Drosophila. Development 122, 3283–3294 (1996).

    CAS  PubMed  Google Scholar 

  12. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998). The discovery of the first and only known family of genes with stem-cell function that is highly conserved during evolution in both animal and plant kingdoms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503–514 (2000).

    CAS  PubMed  Google Scholar 

  14. Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857 (2002). The first genetic study showing the requirement for adherens junctions in stem-cell maintenance.

    Article  CAS  PubMed  Google Scholar 

  15. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998). An elegant study showing the essential role of the dpp signalling pathway in germline stem-cell maintenance.

    Article  CAS  PubMed  Google Scholar 

  16. Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000). This article provides a stringent criterion for defining a stem-cell niche.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997).

    CAS  PubMed  Google Scholar 

  18. Deng, W. & Lin, H. Spectrosomes and fusomes are essential for anchoring mitotic spindles during asymmetric germ cell divisions and for the microtubule-based RNA transport during oocyte specification in Drosophila. Dev. Biol. 189, 79–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 17, 1799–1809 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 25, 481–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Tazuke, S. I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development 129, 2529–2539 (2002).

    CAS  PubMed  Google Scholar 

  25. Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L. & Garavito, M. The germinal proliferation center in the testis of Drosophila melanogaster. J. Ultrastruct. Res. 69, 180–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Gonczy, P. & DiNardo, S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122, 2437–2447 (1996).

    CAS  PubMed  Google Scholar 

  27. Lin, H. The tao of stem cells in the germline. Annu. Rev. Genet. 31, 455–491 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294, 2546–2549 (2001). References 28 and 29 reveal the first signalling pathway from the testicular niche that is required for germline and somatic stem-cell division in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  30. Hombría, J. C.-G. & Brown, S. The fertile field of Drosophila JAK/STAT signalling. Curr. Biol. 12, R569–R575 (2002).

    Article  PubMed  Google Scholar 

  31. McGregor, J. R., Xi, R. & Harrison, D. A. JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 129, 705–717 (2002).

    CAS  PubMed  Google Scholar 

  32. Matunis, E., Tran, J., Gonczy, P., Caldwell, K. & DiNardo, S. punt and schnurri regulate a somatically derived signal that restricts proliferation of committed progenitors in the germline. Development 124, 4383–4391 (1997).

    CAS  PubMed  Google Scholar 

  33. Tran, J., Brenner, T. J. & DiNardo, S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 407, 754–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–754 (2000). References 33 and 34 define the role of Raf- and Egfr-mediated signalling pathways in restricting the proliferation of early germ cells in the testis.

    Article  CAS  PubMed  Google Scholar 

  35. Margolis, J. & Spradling, A. C. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995).

    CAS  PubMed  Google Scholar 

  36. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001). An elegant study that characterizes the role of the Hh signalling pathway in regulating somatic stem-cell division.

    Article  CAS  PubMed  Google Scholar 

  37. Song, X. & Xie, T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl Acad. Sci. USA (in the press).

  38. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs, E., Merrill, B. J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell 1, 13–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Besmer, P. The kit ligand encoded at the murine Steel locus: a pleiotropic growth and differentiation factor. Curr. Opin. Cell Biol. 3, 939–946 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Goldring, K., Partridge, T. & Watt, D. Muscle stem cells. J. Pathol. 197, 457–467 (2002).

    Article  PubMed  Google Scholar 

  46. Forbes, S., Vig, P., Poulsom, R., Thomas, H. & Alison, M. Hepatic stem cells. J. Pathol. 197, 510–518 (2002).

    Article  PubMed  Google Scholar 

  47. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  48. Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, G. Q., Deng, K., Labosky, P. A., Liaw, L. & Hogan, B. L. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev. 10, 1657–1669 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18, 4261–4269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohta, H., Yomogida, K., Dohmae, K. & Nishimune, Y. Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127, 2125–2131 (2000).

    CAS  PubMed  Google Scholar 

  52. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Vanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  Google Scholar 

  54. Gurdon, J. B. A community effect in animal development. Nature 336, 772–774 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, L. et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA 99, 8078–8083 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  57. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. de Rooij, D. G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Jones, L. Stem cells: so what's in a niche? Curr. Biol. 11, R484–R486 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Trenton, J. J. in Regulation of Hematopoietic Stem Cells (ed. Gordon, A. S.) 161–185 (Appleton–Century–Crofts, New York, 1970).

    Google Scholar 

  61. Potten, C. S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    CAS  PubMed  Google Scholar 

  62. Hall, P. A. & Watt, F. M. Stem cells: the generation and maintenance of cellular diversity. Development 106, 619–633 (1989).

    CAS  PubMed  Google Scholar 

  63. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Lin, H., Yue, L. & Spradling, A. S. The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120, 947–956 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank P. Bhattacharaya, M. Goddeeris, S. Grivna, M. Rivas, A. Szakmary and Z. Wang for their critical reading of the manuscript at extremely short notice. I also thank three anonymous reviewers for their comments. The writing of this review and the germline stem-cell research in my laboratory are supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

arm

Bmp8b

Ci

c-Kit

DE-cadherin

dpp

Egfr

en

Erk

fs(1)Yb

hh

Hop

Jak

Mad

Med

Miwi

Notch

piwi

ptc

punt

raf

Shh

shn

Smo

Stat

Steel

Upd

Wnt

zpg

Flybase

innexin 4

FURTHER INFORMATION

Haifan Lin's laboratory

Glossary

TRANS-DIFFERENTIATION

The process by which stem or progenitor cells of one tissue give rise to the cell types of another tissue.

STROMAL CELL

A connective tissue cell such as a fibroblast. In the stem-cell literature, this term often refers specifically to the connective cells that provide immediate support to a particular cell type.

PAPILLA CELL

A stromal cell at the edge of the dermis that is in contact with the epidermis.

CRYPT

The inpocketings on the lumenal surface of the small intestine.

MOSAIC ANALYSIS

(also known as clonal analysis). The use of genetic or surgical operations to generate a genetically mosaic organism to examine the cell-autonomous (effect restricted to the cell in which it is expressed) versus cell-non-autonomous nature of a gene or developmental process.

ADHERENS JUNCTION

A region of cell–cell adhesion that contains cadherin, which forms cell–cell junctions, and catenins, which anchor the actin skeleton to the plasma membrane.

GERMARIUM

The apical, corn-shaped part of the insect ovariole (the functional unit of the insect ovary) that contains both germline and follicle stem cells and is responsible for the continuous production of new egg chambers.

SIGNAL PEPTIDE

(or signal sequence). A short, 15–30-amino-acid sequence on a newly translated polypeptide that functions as a signal for its secretion from the cell. The signal peptide is removed as the protein is secreted.

GAP JUNCTION

A type of junction between two cells through which ions and small molecules can pass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H. The stem-cell niche theory: lessons from flies. Nat Rev Genet 3, 931–940 (2002). https://doi.org/10.1038/nrg952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing