Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanisms and consequences of widespread random monoallelic expression

Key Points

  • Monoallelic expression is an interesting epigenetic phenomenon, as it requires cells to treat the two alleles of a gene unequally, even though their sequences can be identical and they are present in the same nucleus.

  • Although monoallelic expression in the context of genomic imprinting is governed by marks placed during gametogenesis, for random monoallelic expression the determination of which allele will be expressed must be made by individual cells in the developing embryo. After a choice has been made, descendent cells maintain the choice.

  • It has been known for decades that the entire X chromosome in the cells of female placental mammals is subject to random monoallelic expression, but until recently autosomal examples were thought to be restricted to the immune system and chemosensory systems.

  • Genome-scale analyses have now uncovered an unexpectedly large number of autosomal genes that are subject to random monoallelic expression and have shown that these genes encode proteins with a wide range of functions.

  • A number of unusual mechanisms are known to be involved in the regulation of some of these genes, but for most monoallelically expressed genes the mechanisms remain to be defined.

  • Random monoallelic expression has the potential to affect the connection between genotype and phenotype and also has the potential to affect natural selection and the evolution of gene families.

Abstract

Although random monoallelic expression has been known for decades to affect genes on the X chromosome in female placental mammals, until a few years ago it was thought that there were few autosomal genes that were regulated in this manner. New tools for assaying gene expression genome-wide are now revealing that there are perhaps more genes that are subject to random monoallelic expression on mammalian autosomes than there are on the X chromosome and that these expression properties are achieved by diverse molecular mechanisms. This mode of expression has the potential to have an impact on natural selection and on the evolution of gene families.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Random monoallelic expression creates cellular heterogeneity.

References

  1. Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  2. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994). This paper provided the first example of autosomal random monoallelic expression beyond the allelic exclusion of immunoglobulin genes and T cell receptor genes.

    Article  CAS  PubMed Central  Google Scholar 

  3. Gimelbrant, A. A., Ensminger, A. W., Qi, P., Zucker, J. & Chess, A. Monoallelic expression and asynchronous replication of p120 catenin in mouse and human cells. J. Biol. Chem. 280, 1354–1359 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  4. Held, W., Roland, J. & Raulet, D. H. Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature 376, 355–358 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  5. Hollander, G. A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  6. Rhoades, K. L. et al. Allele-specific expression patterns of interleukin-2 and Pax-5 revealed by a sensitive single-cell RT-PCR analysis. Curr. Biol. 10, 789–792 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  7. Riviere, I., Sunshine, M. J. & Littman, D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  8. Pernis, B., Chiappino, G., Kelus, A. S. & Gell, P. G. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. Exp. Med. 122, 853–876 (1965). This paper is remarkable because it showed allelic exclusion even prior to the isolation of the immunoglobulin genes and the discovery of DNA rearrangement.

    Article  CAS  PubMed Central  Google Scholar 

  9. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  10. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007). This paper revealed the unexpectedly large fraction of human autosomal genes subject to random monoallelic expression.

    Article  CAS  PubMed Central  Google Scholar 

  11. Zwemer, L. M. et al. Autosomal monoallelic expression in the mouse. Genome Biol. 13, R10 (2012). This paper showed that mouse autosomes also harbour a large subset of genes displaying random monoallelic expression.

    Article  CAS  PubMed Central  Google Scholar 

  12. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  13. Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nature Genet. 33, 339–341 (2003).

    Article  CAS  Google Scholar 

  14. Simon, I. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929–932 (1999).

    Article  CAS  Google Scholar 

  15. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  16. Magklara, A. et al. An epigenetic signature for monoallelic olfactory receptor expression. Cell 145, 555–570 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  17. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  18. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  19. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  Google Scholar 

  20. Lane, R. P. et al. Genomic analysis of the olfactory receptor region of the mouse and human T-cell receptor α/δ loci. Genome Res. 12, 81–87 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  21. Serizawa, S. et al. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003).

    Article  CAS  Google Scholar 

  22. Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130, 373–384 (2007).

    Article  CAS  Google Scholar 

  23. Nishizumi, H., Kumasaka, K., Inoue, N., Nakashima, A. & Sakano, H. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc. Natl Acad. Sci. USA 104, 20067–20072 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  24. Saleh, A. et al. Identification of probabilistic transcriptional switches in the Ly49 gene cluster: a eukaryotic mechanism for selective gene activation. Immunity 21, 55–66 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  25. Fleischmann, A. et al. Mice with a “monoclonal nose”: perturbations in an olfactory map impair odor discrimination. Neuron 60, 1068–1081 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  26. Lewcock, J. W. & Reed, R. R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl Acad. Sci. USA 101, 1069–1074 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  27. Nguyen, M. Q., Zhou, Z., Marks, C. A., Ryba, N. J. & Belluscio, L. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131, 1009–1017 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  28. Shykind, B. M. et al. Gene switching and the stability of odorant receptor gene choice. Cell 117, 801–815 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  29. Ebrahimi, F. A. & Chess, A. Olfactory neurons are interdependent in maintaining axonal projections. Curr. Biol. 10, 219–222 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  30. Ebrahimi, F. A., Edmondson, J., Rothstein, R. & Chess, A. YAC transgene-mediated olfactory receptor gene choice. Dev. Dyn. 217, 225–231 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  31. Qasba, P. & Reed, R. R. Tissue and zonal-specific expression of an olfactory receptor transgene. J. Neurosci. 18, 227–236 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  32. Serizawa, S. et al. Mutually exclusive expression of odorant receptor transgenes. Nature Neurosci. 3, 687–693 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  33. Hellman, A. & Chess, A. Olfactory axons: a remarkable convergence. Curr. Biol. 12, R849–R851 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  34. Nguyen, M. Q., Marks, C. A., Belluscio, L. & Ryba, N. J. Early expression of odorant receptors distorts the olfactory circuitry. J. Neurosci. 30, 9271–9279 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  35. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998). This paper discusses the possibility evolvability is an important component of cellular and developmental processes.

    Article  CAS  Google Scholar 

  36. Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nature Rev. Genet. 11, 97–108 (2010).

    Article  CAS  Google Scholar 

  37. Proulx, S. R. & Phillips, P. C. Allelic divergence precedes and promotes gene duplication. Evolution 60, 881–892 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  38. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  39. Pastinen, T. Genome-wide allele-specific analysis: insights into regulatory variation. Nature Rev. Genet. 11, 533–538 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  40. Hellman, A. & Chess, A. Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenet. Chromatin 3, 11 (2010).

    Article  Google Scholar 

  41. Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet. 40, 904–908 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  42. Schalkwyk, L. C. et al. Allelic skewing of DNA methylation is widespread across the genome. Am. J. Hum. Genet. 86, 196–212 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  43. Liang, H. E., Hsu, L. Y., Cado, D. & Schlissel, M. S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  44. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  45. Amin, R. H. et al. Biallelic, ubiquitous transcription from the distal germline Igκ locus promoter during B cell development. Proc. Natl Acad. Sci. USA 106, 522–527 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  46. Taylor, B. et al. A reappraisal of evidence for probabilistic models of allelic exclusion. Proc. Natl Acad. Sci. USA 106, 516–521 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  47. Hughes, A. L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  PubMed Central  Google Scholar 

  48. Hughes, A. L. & Nei, M. Maintenance of MHC polymorphism. Nature 355, 402–403 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  49. Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet. 27, 422–426 (2001).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to A. Gimelbrant, A. Hellman and L. Zwemer, as well as to other former and present members of the Chess laboratory for discussions of the issues raised here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Chess.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Nature Reviews Genetics Series on Modes of transcriptional regulation

Glossary

Allelic exclusion

Originally defined as expression of a given immunoglobulin or T cell receptor chain from a single allelic copy of the corresponding genomic locus, the definition has been broadened to include random monoallelic expression of other genes.

Purifying selection

Selection against deleterious alleles that arise in a population, preventing their increase in frequency and assuring their eventual disappearance from the gene pool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chess, A. Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 13, 421–428 (2012). https://doi.org/10.1038/nrg3239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3239

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research