Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA sequencing: advances, challenges and opportunities

Subjects

Key Points

  • Powered by improving next-generation sequencing capabilities, RNA-seq studies continue to provide knowledge about the quantitative and qualitative aspects of transcriptomes in both prokaryotes and eukaryotes.

  • Advances have been made in areas including the cataloguing of sense and antisense transcripts, alternative splicing events, fused transcripts and transcription initiation sites in physiologically normal and disease settings.

  • RNA-seq studies traditionally rely on sequencing of cDNA libraries that are generated from RNAs through various reverse transcription and sample preparation strategies. Biases and artefacts introduced by these experimental steps may hinder some applications.

  • Recent technological developments, including direct RNA sequencing, may alleviate some of the limitations of current RNA-seq approaches and enable new paths of research into transcriptomics.

  • Although several technological barriers still remain, major advances towards reliable analyses of RNAs from limited cell quantities have recently been achieved, paving the way towards transcriptome profiling at the single-cell level.

Abstract

In the few years since its initial application, massively parallel cDNA sequencing, or RNA-seq, has allowed many advances in the characterization and quantification of transcriptomes. Recently, several developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts. These developments include improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative splicing events. Ongoing developments promise further advances in the application of RNA-seq, particularly direct RNA sequencing and approaches that allow RNA quantification from very small amounts of cellular materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-seq for detection of alternative splicing events.
Figure 2: Use of RNA-seq for BCR–ABL fusion gene detection.
Figure 3: Alternative methods for targeted RNA-seq.
Figure 4: Direct RNA sequencing using the Helicos approach.
Figure 5: Emerging technologies for single-cell or low-quantity-cell gene expression profiling.

References

  1. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Berretta, J. & Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 10, 973–982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nature Rev. Genet. 8, 413–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010). This Review provides a comprehensive overview of currently available and in-development NGS technologies.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. van Vliet, A. H. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol. Lett. 302, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009). The first technology for high-throughput direct sequencing of RNA molecules without prior reverse transcription.

    Article  CAS  PubMed  Google Scholar 

  8. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet. 38, 626–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valen, E. et al. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res. 19, 255–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni, T. et al. A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nature Methods 7, 521–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Plessy, C. et al. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods 7, 528–534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozsolak, F. et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22, 3172–3183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009). This paper raises the possibility of 5′-cap addition during post-transcriptional processing steps.

  16. Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell Biol. 10, 637–643 (2009). An excellent review of the literature on sense and antisense transcription.

    Article  CAS  Google Scholar 

  17. Gubler, U. Second-strand cDNA synthesis: mRNA fragments as primers. Meth. Enzymol. 152, 330–335 (1987).

    Article  CAS  Google Scholar 

  18. Perocchi, F., Xu, Z., Clauder-Munster, S. & Steinmetz, L. M. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res. 35, e128 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Spiegelman, S. et al. DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature 227, 1029–1031 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, J. Q. et al. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol. 9, R3 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mamanova, L. et al. FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nature Methods 7, 130–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lipson, D. et al. Quantification of the yeast transcriptome by single-molecule sequencing. Nature Biotechnol. 27, 652–658 (2009).

    Article  CAS  Google Scholar 

  25. Ozsolak, F. et al. Digital transcriptome profiling from attomole-level RNA samples. Genome Res. 20, 519–525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ozsolak, F. et al. Amplification-free digital gene expression profiling from minute cell quantities. Nature Methods 7, 619–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parkhomchuk, D. et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 37, e123 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levin, J. Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature Methods 7, 709–715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faulhammer, D., Lipton, R. J. & Landweber, L. F. Fidelity of enzymatic ligation for DNA computing. J. Comput. Biol. 7, 839–848 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Housby, J. N. & Southern, E. M. Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides. Nucleic Acids Res. 26, 4259–4266 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods 7, 47–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nature Methods 6, 291–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, G. S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Rev. Genet. 8, 749–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nature Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carninci, P. Is sequencing enlightenment ending the dark age of the transcriptome? Nature Methods 6, 711–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, H. & Wong, W. H. Statistical inferences for isoform expression in RNA-seq. Bioinformatics 25, 1026–1032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richard, H. et al. Prediction of alternative isoforms from exon expression levels in RNA-seq experiments. Nucleic Acids Res. 38, e112 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ameur, A., Wetterbom, A., Feuk, L. & Gyllensten, U. Global and unbiased detection of splice junctions from RNA-seq data. Genome Biol. 11, R34 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech. 5, 798–806 (2010).

    Article  CAS  Google Scholar 

  49. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature Rev. Cancer 7, 233–245 (2007).

    Article  CAS  Google Scholar 

  50. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maher, C. A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao, Q. et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA 106, 1886–1891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, H., Wang, J., Mor, G. & Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321, 1357–1361 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Maher, C. A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA 106, 12353–12358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berger, M. F. et al. Integrative analysis of the melanoma transcriptome. Genome Res. 20, 413–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Med. 16, 793–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. McManus, C. J., Duff, M. O., Eipper-Mains, J. & Graveley, B. R. Global analysis of trans-splicing in Drosophila. Proc. Natl Acad. Sci. USA 107, 12975–12979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garber, K. Fixing the front end. Nature Biotech. 26, 1101–1104 (2008).

    Article  CAS  Google Scholar 

  59. Chepelev, I., Wei, G., Tang, Q. & Zhao, K. Detection of single nucleotide variations in expressed exons of the human genome using RNA-seq. Nucleic Acids Res. 37, e106 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cirulli, E. T. et al. Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol. 11 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Levin, J. Z. et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol. 10, R115 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    CAS  PubMed  Google Scholar 

  64. Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods 6, 613–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet. 41, 572–578 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet. 38, 1375–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Kapranov, P. et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466, 642–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Kawaji, H. & Hayashizaki, Y. Exploration of small RNAs. PLoS Genet. 4, e22 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nature Methods 6, 474–476 (2009). The authors describe the difficulties associated with the analysis and quantification of short RNA species using current NGS platforms.

    Article  CAS  PubMed  Google Scholar 

  75. Cocquet, J., Chong, A., Zhang, G. & Veitia, R. A. Reverse transcriptase template switching and false alternative transcripts. Genomics 88, 127–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Mader, R. M. et al. Reverse transcriptase template switching during reverse transcriptase-polymerase chain reaction: artificial generation of deletions in ribonucleotide reductase mRNA. J. Lab. Clin. Med. 137, 422–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Roy, S. W. & Irimia, M. When good transcripts go bad: artifactual RT-PCR 'splicing' and genome analysis. Bioessays 30, 601–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, D. & Patton, J. T. Reverse transcriptase adds nontemplated nucleotides to cDNAs during 5′-RACE and primer extension. Biotechniques 30, 574–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Roberts, J. D. et al. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol. Cell. Biol. 9, 469–476 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Armour, C. D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nature Methods 6, 647–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Hansen, K. D., Brenner, S. E. & Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38, e131 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rosenkranz, R., Borodina, T., Lehrach, H. & Himmelbauer, H. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics 92, 187–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Oshlack, A. & Wakefield, M. J. Transcript length bias in RNA-seq data confounds systems biology. Biol. Direct 4, 14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).

    Article  PubMed  CAS  Google Scholar 

  86. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotech. 28, 503–510 (2010).

    Article  CAS  Google Scholar 

  87. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  88. Shcherbik, N., Wang, M., Lapik, Y. R., Srivastava, L. & Pestov, D. G. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep. 11, 106–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Makeyev, E. V. & Bamford, D. H. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J. 19, 124–133 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R. & Liotta, L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B. & Riggs, A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dafforn, A. et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37, 854–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nygaard, V. & Hovig, E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res. 34, 996–1014 (2006). This review provides a good overview of the current low-quantity RNA applications and the complications associated with them.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotech. 26, 317–325 (2008).

    Article  CAS  Google Scholar 

  100. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Byrne, J. A., Nguyen, H. N. & Reijo Pera, R. A. Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS ONE 4, e7118 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Helzer, K. T. et al. Circulating tumor cells are transcriptionally similar to the primary tumor in a murine prostate model. Cancer Res. 69, 7860–7866 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Lo, Y. M. et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nature Med. 13, 218–223 (2007). This paper describes the quantification of extracellular circulating RNA in mother's plasma during pregnancy to detect fetal aneuploidy.

    Article  CAS  PubMed  Google Scholar 

  104. Bowers, J. et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nature Methods 6, 593–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to authors whose work could not be cited owing to space constraints. We are grateful to the US National Human Genome Research Institute for their support (grants R01 HG005230 and R44 HG005279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatih Ozsolak or Patrice M. Milos.

Ethics declarations

Competing interests

Faith Ozsolak and Patrice M. Milos are employees of Helicos BioSciences Corporation.

Related links

Related links

FURTHER INFORMATION

Fatih Ozsolak and Patrice M. Milos's homepage (Helicos BioSciences website)

Helicos Technology Center

The University of California Santa Cruz Genome Browser

Glossary

Next generation DNA sequencing

(Often abbreviated to NGS.) Non-Sanger-based high-throughput DNA sequencing technologies. Compared to Sanger sequencing, NGS platforms sequence as many as billions of DNA strands in parallel, yielding substantially more throughput and minimizing the need for the fragment-cloning methods that are often used in Sanger sequencing of genomes.

Semisuppressive PCR

A PCR strategy that aims to reduce primer dimer accumulation by preferentially amplifying longer DNA fragments.

Spike pool

Internal controls added to RNA samples, consisting of RNA elements of known sequence and composition.

Paired-end reads

A strategy involving sequencing of two different regions that are located apart from each other on the same DNA fragment. This strategy provides elevated physical coverage and alleviates several limitations of NGS platforms that arise because of their relatively short read length.

Laser capture microdissection

(Often abbreviated to LCM.) A method allowing cells of interest that are chosen by the operator using a microscope to be specifically captured from heterogeneous tissue samples. The isolated cells can be used for various analyses including of protein and nucleic acid.

Quantitative real-time polymerase chain reaction

A PCR application that enables the measurement of nucleic acid quantities in samples. Nucleic acid of interest is amplified with PCR. The level of the amplified product accumulation during PCR cycles are measured in real time. This data is used to infer starting nucleic acid quantities.

Circulating extracellular nucleic acid

Extracellular DNA or RNA molecules in plasma and serum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozsolak, F., Milos, P. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12, 87–98 (2011). https://doi.org/10.1038/nrg2934

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing