Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics of global gene expression

Key Points

  • A new field, the genetic analysis of global gene expression, has emerged in recent years, driven by the realization that traditional techniques of linkage and association analysis can be applied to thousands of transcript levels measured by microarrays.

  • Studies in a number of species have documented abundant heritable variation in gene expression among individuals and strains.

  • Linkage analysis has been used to map thousands of loci that affect gene expression.

  • Expression traits consistently show complex inheritance, explicable only by multiple underlying loci and possibly interactions among the loci.

  • Many types of genetic complexity are observed across the thousands of expression traits.

  • A locus that affects gene expression can be classified according to its location as 'local' (near the genomic location of the gene) or 'distant' (elsewhere in the genome).

  • Many gene expression traits are affected by local regulatory variation. It appears that most but not all local regulatory variation functions in cis, with perhaps a quarter to a third acting in trans.

  • Most transcripts link to loci that are distant from the genomic locations of the genes that encode the corresponding transcripts. One common feature of these loci is 'hot spots': individual loci that affect large numbers of transcripts.

  • Future research will focus on high-throughput identification and characterization of polymorphisms that affect expression, extending studies to population samples, and applying the approach to other global molecular phenotypes.

Abstract

A new field of genetic analysis of global gene expression has emerged in recent years, driven by the realization that traditional techniques of linkage and association analysis can be applied to thousands of transcript levels measured by microarrays. Genetic dissection of transcript abundance has shed light on the architecture of quantitative traits, provided a new approach for connecting DNA sequence variation with phenotypic variation, and improved our understanding of transcriptional regulation and regulatory variation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Most gene expression traits are affected by multiple loci.
Figure 2: Types of complex inheritance of transcript levels.
Figure 3: Local and distant regulatory variation.
Figure 4: Hot spots of distant regulatory variation.

References

  1. Brem, R. B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002). The first study to report genetic mapping of global gene expression measured with microarrays. The authors described local and distant linkages and expression QTL hot spots, and showed that the inheritance of transcript levels is usually complex.

    CAS  PubMed  Google Scholar 

  2. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Primig, M. et al. The core meiotic transcriptome in budding yeasts. Nature Genet. 26, 415–423 (2000).

    CAS  PubMed  Google Scholar 

  4. Cavalieri, D., Townsend, J. P. & Hartl, D. L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc. Natl Acad. Sci. USA 97, 12369–12374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Karp, C. L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunol. 1, 221–226 (2000).

    CAS  Google Scholar 

  6. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001).

    CAS  PubMed  Google Scholar 

  7. Oleksiak, M. F., Churchill, G. A. & Crawford, D. L. Variation in gene expression within and among natural populations. Nature Genet. 32, 261–266 (2002).

    CAS  PubMed  Google Scholar 

  8. Jansen, R. C. & Nap, J. P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001). A theoretical proposal to combine linkage analysis with expression profiling.

    CAS  PubMed  Google Scholar 

  9. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genet. 35, 57–64 (2003). This detailed analysis of distant regulatory variation identified two polymorphisms that are responsible for expression QTL hot spots and showed that distant regulatory loci are not enriched for transcription factors.

    CAS  PubMed  Google Scholar 

  10. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003). This first study of the genetics of global gene expression in a mammal focused on a mouse cross and showed how expression traits can be connected with a physiological phenotype such as obesity.

    CAS  PubMed  Google Scholar 

  11. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genet. 37, 243–253 (2005).

    CAS  PubMed  Google Scholar 

  12. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nature Genet. 37, 225–232 (2005).

    CAS  PubMed  Google Scholar 

  13. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005). References 11–13 describe extensive studies of the genetics of global gene expression in recombinant inbred lines of rodents.

    Article  CAS  PubMed  Google Scholar 

  14. DeCook, R., Lall, S., Nettleton, D. & Howell, S. H. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172, 1155–1164 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirst, M. et al. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 135, 2368–2378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Monks, S. A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004). References 16 and 17 extended linkage studies of global gene expression to humans by carrying out expression profiling in cell lines from previously genotyped CEPH reference families.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheung, V. G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stranger, B. E. et al. Genome-wide associations of gene expression variation in humans. PLoS Genet. 1, e78 (2005). References 18 and 19 reported the first population association studies of expression of a subset of human genes measured in cell lines from CEPH individuals previously densely genotyped at over a million SNPs by the International HapMap Project.

    PubMed  PubMed Central  Google Scholar 

  20. Mehrabian, M. et al. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genet. 37, 1224–1233 (2005).

    CAS  PubMed  Google Scholar 

  21. Wang, S. et al. Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet. 2, e15 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Llinas, M., Bozdech, Z., Wong, E. D., Adai, A. T. & DeRisi, J. L. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 34, 1166–1173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kendziorski, C. & Wang, P. A review of statistical methods for expression quantitative trait loci mapping. Mamm. Genome 17, 509–517 (2006).

    PubMed  Google Scholar 

  24. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975). This classic paper proposed that regulatory mutations that alter gene expression have a key role in biological differences between species.

    CAS  PubMed  Google Scholar 

  25. Stern, D. L. Evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091 (2000).

    CAS  PubMed  Google Scholar 

  26. Wray, G. A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003).

    CAS  PubMed  Google Scholar 

  27. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, London, 2001).

    Google Scholar 

  28. Beavis, W. D. in Molecular Dissection of Complex Traits (ed. Patterson, A. H.) 145–162 (CRC, New York, 1998).

    Google Scholar 

  29. Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA 102, 1572–1577 (2005). A detailed analysis of complex genetic architectures of expression traits.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930).

    Google Scholar 

  31. Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13, R1–R7 (2004).

    CAS  PubMed  Google Scholar 

  32. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998).

    PubMed  Google Scholar 

  33. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002).

    CAS  PubMed  Google Scholar 

  34. Gibson, G. et al. Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 167, 1791–1799 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Swanson-Wagner, R. A. et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl Acad. Sci. USA 103, 6805–6810 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wayne, M. L., Pan, Y. J., Nuzhdin, S. V. & McIntyre, L. M. Additivity and trans-acting effects on gene expression in male Drosophila simulans. Genetics 168, 1413–1420 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vuylsteke, M., van Eeuwijk, F., Van Hummelen, P., Kuiper, M. & Zabeau, M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171, 1267–1275 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Storey, J. D., Akey, J. M. & Kruglyak, L. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol. 3, e267 (2005).

    PubMed  PubMed Central  Google Scholar 

  40. Carlborg, O. et al. Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21, 2383–2393 (2005).

    CAS  PubMed  Google Scholar 

  41. Landry, C. R., Oh, J., Hartl, D. L. & Cavalieri, D. Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene 366, 343–351 (2006).

    CAS  PubMed  Google Scholar 

  42. Chen, W. J. et al. Contribution of transcriptional regulation to natural variations in Arabidopsis. Genome Biol. 6, R32 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Whitehead, A. & Crawford, D. L. Variation in tissue-specific gene expression among natural populations. Genome Biol. 6, R13 (2005).

    PubMed  PubMed Central  Google Scholar 

  44. Yang, X. et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cotsapas, C. J. et al. Genetic dissection of gene regulation in multiple mouse tissues. Mamm. Genome 17, 490–495 (2006).

    PubMed  Google Scholar 

  46. Benzer, S. Fine structure of a genetic region in Bacteriophage. Proc. Natl Acad. Sci. USA 41, 344–354 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewis, E. B. Pseudoallelism and gene evolution. Cold Spring Harb. Symp. Quant. Biol. 16, 159–174 (1951).

    CAS  PubMed  Google Scholar 

  48. Pontecorvo, G. Genetic formulation of gene structure and gene action. Adv. Enzymol. Relat. Subj. Biochem. 13, 121–149 (1952).

    CAS  PubMed  Google Scholar 

  49. Ronald, J., Brem, R. B., Whittle, J. & Kruglyak, L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 1, e25 (2005).

    PubMed  PubMed Central  Google Scholar 

  50. Doss, S., Schadt, E. E., Drake, T. A. & Lusis, A. J. Cis-acting expression quantitative trait loci in mice. Genome Res. 15, 681–691 (2005). References 49 and 50 use classic cis/trans tests to determine the contribution of cis -acting polymorphisms to local regulatory variation.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    CAS  PubMed  Google Scholar 

  53. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003).

    CAS  PubMed  Google Scholar 

  54. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    CAS  PubMed  Google Scholar 

  55. Hahn, M. W., Stajich, J. E. & Wray, G. A. The effects of selection against spurious transcription factor binding sites. Mol. Biol. Evol. 20, 901–906 (2003).

    CAS  PubMed  Google Scholar 

  56. Schadt, E. E. Exploiting naturally occurring DNA variation and molecular profiling data to dissect disease and drug response traits. Curr. Opin. Biotechnol. 16, 647–654 (2005).

    CAS  PubMed  Google Scholar 

  57. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    CAS  PubMed  Google Scholar 

  58. Cowles, C. R., Hirschhorn, J. N., Altshuler, D. & Lander, E. S. Detection of regulatory variation in mouse genes. Nature Genet. 32, 432–437 (2002).

    CAS  PubMed  Google Scholar 

  59. Pastinen, T. et al. A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16, 184–193 (2004).

    CAS  PubMed  Google Scholar 

  60. Knight, J. C., Keating, B. J. & Kwiatkowski, D. P. Allele-specific repression of lymphotoxin-α by activated B cell factor-1. Nature Genet. 36, 394–349 (2004).

    CAS  PubMed  Google Scholar 

  61. Damerval, C., Maurice, A., Josse, J. M. & de Vienne, D. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137, 289–301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Klose, J. et al. Genetic analysis of the mouse brain proteome. Nature Genet. 30, 385–393 (2002). References 61 and 62 describe classic and modern studies (respectively) of the genetics of protein abundance measured with two-dimensional gels.

    CAS  PubMed  Google Scholar 

  63. Lo, H. S. et al. Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ronald, J. et al. Simultaneous genotyping, gene-expression measurement, and detection of allele-specific expression with oligonucleotide arrays. Genome Res. 15, 284–291 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pant, P. V. et al. Analysis of allelic differential expression in human white blood cells. Genome Res. 16, 331–339 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Buckland, P. R. et al. A high proportion of polymorphisms in the promoters of brain expressed genes influences transcriptional activity. Biochim. Biophys. Acta 1690, 238–249 (2004).

    CAS  PubMed  Google Scholar 

  67. Hoogendoorn, B. et al. Functional analysis of human promoter polymorphisms. Hum. Mol. Genet. 12, 2249–2254 (2003).

    CAS  PubMed  Google Scholar 

  68. Buckland, P. R. et al. A high proportion of chromosome 21 promoter polymorphisms influence transcriptional activity. Gene Expr. 11, 233–239 (2004).

    PubMed  Google Scholar 

  69. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    CAS  PubMed  Google Scholar 

  70. Knight, J. C. Allele-specific gene expression uncovered. Trends Genet. 20, 113–116 (2004).

    CAS  PubMed  Google Scholar 

  71. Horan, M. et al. Human growth hormone 1 (GH1) gene expression: complex haplotype-dependent influence of polymorphic variation in the proximal promoter and locus control region. Hum. Mutat. 21, 408–423 (2003).

    CAS  PubMed  Google Scholar 

  72. Tao, H., Cox, D. R. & Frazer, K. A. Allele-specific KRT1 expression is a complex trait. PLoS Genet. 2, e93 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Perez-Enciso, M. In silico study of transcriptome genetic variation in outbred populations. Genetics 166, 547–554 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Allison, D. B. et al. Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. Am. J. Hum. Genet. 63, 1190–1201 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang, C. & Zeng, Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bing, N. & Hoeschele, I. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170, 533–542 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kulp, D. C. & Jagalur, M. Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7, 125 (2006).

    PubMed  PubMed Central  Google Scholar 

  78. Gunderson, K. L. et al. Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7, 641–648 (2006).

    CAS  PubMed  Google Scholar 

  79. Matsuzaki, H. et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–425 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gresham, D. et al. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311, 1932–1936 (2006).

    CAS  PubMed  Google Scholar 

  81. Deutschbauer, A. M. & Davis, R. W. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nature Genet. 37, 1333–1340 (2005).

    CAS  PubMed  Google Scholar 

  82. Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    CAS  PubMed  Google Scholar 

  83. Gibson, G. & Weir, B. The quantitative genetics of transcription. Trends Genet. 21, 616–623 (2005).

    CAS  PubMed  Google Scholar 

  84. Hamblin, M. T., Thompson, E. E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002).

    PubMed  Google Scholar 

  85. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Crawford, D. L., Segal, J. A. & Barnett, J. L. Evolutionary analysis of TATA-less proximal promoter function. Mol. Biol. Evol. 16, 194–207 (1999).

    CAS  PubMed  Google Scholar 

  87. Hahn, M. W., Rockman, M. V., Soranzo, N., Goldstein, D. B. & Wray, G. A. Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the factor VII locus in humans. Genetics 167, 867–877 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rockman, M. V., Hahn, M. W., Soranzo, N., Goldstein, D. B. & Wray, G. A. Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr. Biol. 13, 2118–2123 (2003).

    CAS  PubMed  Google Scholar 

  89. Rockman, M. V. et al. Positive selection on MMP3 regulation has shaped heart disease risk. Curr. Biol. 14, 1531–1539 (2004).

    CAS  PubMed  Google Scholar 

  90. Rockman, M. V. et al. Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol. 3, e387 (2005).

    PubMed  PubMed Central  Google Scholar 

  91. Bamshad, M. J. et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc. Natl Acad. Sci. USA 99, 10539–10544 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434, 857–863 (2005).

    CAS  PubMed  Google Scholar 

  93. Takahashi, A., Tsaur, S. C., Coyne, J. A. & Wu, C. I. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 3920–3925 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Keurentjes, J. J. et al. The genetics of plant metabolism. Nature Genet. 38, 842–849 (2006).

    CAS  PubMed  Google Scholar 

  95. Perlstein, E. O. et al. Revealing complex traits with small molecules and naturally recombinant yeast strains. Chem. Biol. 13, 319–327 (2006).

    CAS  PubMed  Google Scholar 

  96. Churchill, G. A. & Doerge, R. W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Perez-Enciso, M. Multiple association analysis via simulated annealing (MASSA). Bioinformatics 22, 573–580 (2006).

    CAS  PubMed  Google Scholar 

  99. Lan, H. et al. Dimension reduction for mapping mRNA abundance as quantitative traits. Genetics 164, 1607–1614 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genet. 37, 710–717 (2005).

    CAS  PubMed  Google Scholar 

  101. Li, H. Q. et al. Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum. Mol. Genet. 14, 1119–1125 (2005).

    CAS  PubMed  Google Scholar 

  102. Haldane, J. B. S. The time of action of genes, and its bearing on some evolutionary problems. Am. Nat. 66, 5–24 (1932).

    Google Scholar 

  103. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  104. Schwartz, D. Genetic studies on mutant enzymes in maize. III. Contol of gene action in the synthesis of pH 7.5 esterase. Genetics 47, 1609–1615 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wallace, B. Genetic diversity, genetic uniformity, and heterosis. Can. J. Genet. Cytol. 5, 239–253 (1963).

    Google Scholar 

  106. Zuckerkandl, E. in Classification and Human Evolution (ed. Washburn, S. L.) (Aldine, Chicago, 1963).

    Google Scholar 

  107. Abraham, I. & Doane, W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 75, 4446–4450 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Powell, J. R. Population genetics of Drosophila amylase. II. Geographic patterns in D. pseudoobscura. Genetics 92, 613–622 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Matsuo, Y. & Yamazaki, T. Genetic analysis of natural populations of Drosophila melanogaster in Japan. IV. Natural selection on the inducibility, but not on the structural genes, of amylase loci. Genetics 108, 879–896 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Powell, J. R. & Andjelkovic, M. Population genetics of Drosophila amylase. IV. Selection in laboratory populations maintained on different carbohydrates. Genetics 103, 675–89 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ayala, F. J. & McDonald, J. F. Continuous variation: possible role of regulatory genes. Genetica 52/53, 1–15 (1980).

    Google Scholar 

  112. Allendorf, F. W., Knudsen, K. L. & Phelps, S. R. Identification of a gene regulating the tissue expression of a phosphoglucomutase locus in rainbow trout. Genetics 102, 259–268 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Lucchesi, J. C. & Weir, B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 77, 1073–1077 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Stumpf, M. P., Wiuf, C. & May, R. M. Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc. Natl Acad. Sci. USA 102, 4221–4224 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gomulkiewicz, R. & Kirkpatrick, M. Quantitative genetics and the evolution of reaction norms. Evolution 46, 390–411 (1992).

    PubMed  Google Scholar 

  116. Ohta, T. Origin of the neutral and nearly neutral theories of evolution. J. Biosci. 28, 371–377 (2003).

    PubMed  Google Scholar 

  117. Wittkopp, P. J., Haerum, B. K. & Clark, A. G. Evolutionary changes in cis and trans gene regulation. Nature 430, 85–88 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We regret that space constraints prevented us from citing additional work in the field. We thank past and current members of the Kruglyak laboratory and our collaborators for discussions. Work was supported in part by a grant from the National Institute of Mental Health and a James S. McDonnell Foundation Centennial Fellowship to L.K. M.V.R. is supported by The Jane Coffin Childs Memorial Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Kruglyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Gene Ontology

Leonid Kruglyak's homepage

Glossary

Complex and quantitative traits

Phenotypes that are shaped by multiple and possibly interacting genetic and environmental factors. Quantitative traits (as distinguished from discrete traits) are measured on continuous scales.

Effect size

The magnitude of contribution of a locus to variation in a phenotype.

Recombinant inbred lines

Panels of genetically mosaic but homozygous strains generated by crossing parental strains and inbreeding the progeny.

False-discovery rate

The fraction of results declared significant at a given threshold that are expected to be false positives.

Dimensional reduction

A class of mathematical techniques for summarizing the main characteristics of multivariate data with fewer variables.

QTL

Quantitative trait locus; a region of the genome that contributes to variation in a quantitative trait.

Beavis effect

A statistical artefact that is due to the deviation of estimates from true values by random error. In a mapping experiment, the loci that are deemed significant are enriched for those in which the estimated effects benefit from random error that happens to fall in the right direction. Therefore, significant QTLs are disproportionately those in which the effect sizes are inflated by chance.

Heritability

The fraction of total phenotypic variance that is attributable to additive genetic effects. Estimators with different technical definitions and biological meanings abound. This is not an inherent property of a trait; heritability depends on the nature of the genetic sample (for example, intercross, inbred lines, twins and random populations) and the space of environments surveyed.

Transgressive segregation

A distribution of trait values for a segregating population that extends significantly beyond the range defined by the progenitor strains.

Directional genetics

A distribution of trait values for a segregating population that is significantly concentrated within the range defined by the progenitor strains.

Non-additivity

A property of alleles at a locus, such that the trait value of heterozygous individuals is not the average of the trait values of homozygotes for each allele.

Genetic interaction

A property of alleles at different loci, such that their combined effect on a phenotype deviates from the sum of their individual effects (this is often called epistasis).

Allelic heterogeneity

The phenomenon in which a genetically diverse population harbours many different alleles at a QTL.

Gene-by-environment interaction

The effect of a locus on a trait depends on the environment, and the effect of the environment on the trait depends on the locus.

Pleiotropy

The capacity of a single mutation to affect multiple traits.

Multiple testing problem

The number of false-positive results increases when multiple statistical tests are carried out, requiring more stringent thresholds to reach the same level of significance.

Linkage disequilibrium

The nonrandom association of alleles at different loci in a population.

QTN

Quantitative trait nucleotide; the actual sequence polymorphism responsible for variation in a quantitative trait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockman, M., Kruglyak, L. Genetics of global gene expression. Nat Rev Genet 7, 862–872 (2006). https://doi.org/10.1038/nrg1964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing