Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adrenal disorders in pregnancy

Abstract

Pregnancy is marked by alterations in a number of endocrine systems, including activation of the renin–angiotensin–aldosterone system and the hypothalamic–pituitary–adrenal axis. The placenta, the fetal adrenal glands and the liver constitute an interactive endocrine entity, known as the fetoplacental unit. In the fetoplacental unit, the fetal adrenal glands are the primary source of dehydroepiandrosterone sulphate, which is further metabolized by the fetal liver and placenta to produce a variety of oestrogens. Several disorders can affect both the fetal and maternal adrenal glands during pregnancy. The most common fetal adrenal disorder, steroid 21-hydroxylase deficiency, leads to abnormalities in sexual development and can be life threatening for the neonate. Although rare, maternal adrenal disorders are associated with considerable maternal mortality and morbidity if not promptly recognized and treated. However, diagnosis is often difficult to establish because of the endocrine changes occurring during normal pregnancies and the lack of reference values for the majority of the adrenal steroids. This Review provides an overview of adrenal steroid metabolism during pregnancy and focuses on diagnosis and treatment of the most common fetal and maternal adrenal disorders.

Key Points

  • Adrenal disorders are rare in pregnancy but are associated with considerable maternal and fetal mortality and morbidity if not promptly diagnosed and treated

  • CYP21A2 deficiency is the most common cause of congenital adrenal hyperplasia, which causes fetal androgen excess and female fetus virilization; however, the placenta protects the mother against androgen exposure

  • The most frequent cause of Cushing syndrome during pregnancy is an adrenocortical adenoma; surgical treatment is recommended to improve fetal and maternal outcomes

  • Primary aldosteronism can improve spontaneously during pregnancy and is often successfully controlled with medical therapy

  • If pheochromocytoma is diagnosed during pregnancy, adrenalectomy should always be considered, as untreated pheochromocytoma is associated with maternal mortality as high as 48%

  • Adrenal insufficiency can be undiagnosed during pregnancy because circulating levels of cortisol increase twofold to threefold in pregnant women, such that plasma and urinary cortisol values within the nonpregnant normal range are misinterpreted as normal

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adrenal gland histology.
Figure 2: Steroidogenic enzyme expression pattern in the unique fetal adrenal zones and the steroids produced.
Figure 3: The placenta, in concert with the fetal adrenal glands and liver, constitutes an interactive endocrine entity, known as fetoplacental unit.
Figure 4: The diagnosis and treatment of primary aldosteronism during pregnancy.
Figure 5: The diagnosis and treatment of Cushing syndrome during pregnancy.
Figure 6: The diagnosis and treatment of pheochromocytoma during pregnancy.

Similar content being viewed by others

References

  1. Rainey, W. E., Rehman, K. S. & Carr, B. R. The human fetal adrenal: making adrenal androgens for placental estrogens. Semin. Reprod. Med. 22, 327–336 (2004).

    CAS  PubMed  Google Scholar 

  2. Ishimoto, H. & Jaffe, R. B. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr. Rev. 32, 317–355 (2011).

    CAS  PubMed  Google Scholar 

  3. Diczfalusy, E. Endocrine functions of the human fetoplacental unit. Fed. Proc. 23, 791–798 (1964).

    CAS  PubMed  Google Scholar 

  4. Lindsay, J. R. & Nieman, L. K. The hypothalamic–pituitary–adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr. Rev. 26, 775–799 (2005).

    CAS  PubMed  Google Scholar 

  5. Mesiano, S., Coulter, C. L. & Jaffe, R. B. Localization of cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17α-hydroxylase/17, 20-lyase, and 3 β-hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation. J. Clin. Endocrinol. Metab. 77, 1184–1189 (1993).

    CAS  PubMed  Google Scholar 

  6. Ben-David, S. et al. Parturition itself is the basis for fetal adrenal involution. J. Clin. Endocrinol. Metab. 92, 93–97 (2007).

    CAS  PubMed  Google Scholar 

  7. Goto, M. et al. In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development. J. Clin. Invest. 116, 953–960 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rehman, K. S., Carr, B. R. & Rainey, W. E. Profiling the steroidogenic pathway in human fetal and adult adrenals. J. Soc. Gynecol. Investig. 10, 372–380 (2003).

    CAS  PubMed  Google Scholar 

  9. Siiteri, P. K. & MacDonald, P. C. Placental estrogen biosynthesis during human pregnancy. J. Clin. Endocrinol. Metab. 26, 751–761 (1966).

    CAS  PubMed  Google Scholar 

  10. Bolte, E., Mancuso, S., Eriksson, G., Wiqvist, N. & Diczfalusy, E. Studies on the aromatisation of neutral steroids in pregnant women. I. Aromatisation of C-19 steroids by placentas perfused in situ. Acta Endocrinol. (Copenh.) 45, 535–559 (1964).

    CAS  Google Scholar 

  11. Pang, S. et al. Amniotic fluid concentrations of Δ5 and Δ4 steroids in fetuses with congenital adrenal hyperplasia due to 21 hydroxylase deficiency and in anencephalic fetuses. J. Clin. Endocrinol. Metab. 51, 223–229 (1980).

    CAS  PubMed  Google Scholar 

  12. Buster, J. E. et al. Interrelationships of circulating maternal steroid concentrations in third trimester pregnancies. I. C21 steroids: progesterone, 16α-hydroxyprogesterone, 17α-hydroxyprogesterone, 20α-dihydroprogesterone, Δ5-pregnenolone sulfate and 17-hydroxy Δ5-pregnenolone. J. Clin. Endocrinol. Metab. 48, 133–138 (1979).

    CAS  PubMed  Google Scholar 

  13. Rouse, D. J. et al. A trial of 17 α-hydroxyprogesterone caproate to prevent prematurity in twins. N. Engl. J. Med. 357, 454–461 (2007).

    CAS  PubMed  Google Scholar 

  14. Meis, P. J. et al. Prevention of recurrent preterm delivery by 17 α-hydroxyprogesterone caproate. N. Engl. J. Med. 348, 2379–2385 (2003).

    CAS  PubMed  Google Scholar 

  15. Bocian-Sobkowska, J., Malendowicz, L. K., Wozniak, W. & Kopaczyk, M. Adrenal glands in anencephaly. Folia Morphol. (Warsz.) 55, 214–216 (1996).

    CAS  Google Scholar 

  16. Parker, C. R. Jr, Stankovic, A. M. & Goland, R. S. Corticotropin-releasing hormone stimulates steroidogenesis in cultured human adrenal cells. Mol. Cell Endocrinol. 155, 19–25 (1999).

    CAS  PubMed  Google Scholar 

  17. Sirianni, R., Rehman, K. S., Carr, B. R., Parker, C. R. Jr & Rainey, W. E. Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J. Clin. Endocrinol. Metab. 90, 279–285 (2005).

    CAS  PubMed  Google Scholar 

  18. Sirianni, R., Mayhew, B. A., Carr, B. R., Parker, C. R. Jr & Rainey, W. E. Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J. Clin. Endocrinol. Metab. 90, 5393–5400 (2005).

    CAS  PubMed  Google Scholar 

  19. Smith, R., Mesiano, S., Chan, E. C., Brown, S. & Jaffe, R. B. Corticotropin-releasing hormone directly and preferentially stimulates dehydroepiandrosterone sulfate secretion by human fetal adrenal cortical cells. J. Clin. Endocrinol. Metab. 83, 2916–2920 (1998).

    CAS  PubMed  Google Scholar 

  20. Petraglia, F., Sawchenko, P. E., Rivier, J. & Vale, W. Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 328, 717–719 (1987).

    CAS  PubMed  Google Scholar 

  21. Goland, R. S., Wardlaw, S. L., Stark, R. I., Brown, L. S. Jr & Frantz, A. G. High levels of corticotropin-releasing hormone immunoactivity in maternal and fetal plasma during pregnancy. J. Clin. Endocrinol. Metab. 63, 1199–1203 (1986).

    CAS  PubMed  Google Scholar 

  22. Florio, P., Woods, R. J., Genazzani, A. R., Lowry, P. J. & Petraglia, F. Changes in amniotic fluid immunoreactive corticotropin-releasing factor (CRF) and CRF-binding protein levels in pregnant women at term and during labor. J. Clin. Endocrinol. Metab. 82, 835–838 (1997).

    CAS  PubMed  Google Scholar 

  23. Chrousos, G. P., Torpy, D. J. & Gold, P. W. Interactions between the hypothalamic–pituitary–adrenal axis and the female reproductive system: clinical implications. Ann. Intern. Med. 129, 229–240 (1998).

    CAS  PubMed  Google Scholar 

  24. Robinson, B. G., Emanuel, R. L., Frim, D. M. & Majzoub, J. A. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc. Natl Acad. Sci. USA 85, 5244–5248 (1988).

    CAS  PubMed  Google Scholar 

  25. Jones, S. A., Brooks, A. N. & Challis, J. R. Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta. J. Clin. Endocrinol. Metab. 68, 825–830 (1989).

    CAS  PubMed  Google Scholar 

  26. Bocian-Sobkowska, J., Malendowicz, L. K. & Wozniak, W. Comparative stereological study on zonation and cellular composition of adrenal glands of normal and anencephalic human fetuses. I. Zonation of the gland. Histol. Histopathol. 12, 311–317 (1997).

    CAS  PubMed  Google Scholar 

  27. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  Google Scholar 

  28. Jackson, R. S. et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J. Clin. Invest. 112, 1550–1560 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Clark, A. J., McLoughlin, L. & Grossman, A. Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor. Lancet 341, 461–462 (1993).

    CAS  PubMed  Google Scholar 

  30. Metherell, L. A. et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat. Genet. 37, 166–170 (2005).

    CAS  PubMed  Google Scholar 

  31. Metherell, L. A., Chan, L. F. & Clark, A. J. The genetics of ACTH resistance syndromes. Best Pract. Res. Clin. Endocrinol. Metab. 20, 547–560 (2006).

    CAS  PubMed  Google Scholar 

  32. Metherell, L. A. et al. Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency. J. Clin. Endocrinol. Metab. 94, 3865–3871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J. Clin. Invest. 122, 814–820 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meimaridou, E. et al. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat. Genet. 44, 740–742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Parker, K. L. et al. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog. Horm. Res. 57, 19–36 (2002).

    CAS  PubMed  Google Scholar 

  36. Hanley, N. A., Rainey, W. E., Wilson, D. I., Ball, S. G. & Parker, K. L. Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation. Mol. Endocrinol. 15, 57–68 (2001).

    CAS  PubMed  Google Scholar 

  37. Peter, M., Viemann, M., Partsch, C. J. & Sippell, W. G. Congenital adrenal hypoplasia: clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene. J. Clin. Endocrinol. Metab. 83, 2666–2674 (1998).

    CAS  PubMed  Google Scholar 

  38. Shen, W. H., Moore, C. C., Ikeda, Y., Parker, K. L. & Ingraham, H. A. Nuclear receptor steroidogenic factor 1 regulates the Müllerian inhibiting substance gene: a link to the sex determination cascade. Cell 77, 651–661 (1994).

    PubMed  Google Scholar 

  39. Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126 (1999).

    CAS  PubMed  Google Scholar 

  40. El-Khairi, R., Martinez-Aguayo, A., Ferraz-de-Souza, B., Lin, L. & Achermann, J. C. Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function. Endocr. Dev. 20, 38–46 (2011).

    CAS  PubMed  Google Scholar 

  41. Schimmer, B. P. & White, P. C. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol. Endocrinol. 24, 1322–1337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Speiser, P. W. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 4133–4160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lekarev, O., Mallet, D., Yuen, T., Morel, Y. & New, M. I. Congenital lipoid adrenal hyperplasia (a rare form of adrenal insufficiency and ambiguous genitalia) caused by a novel mutation of the steroidogenic acute regulatory protein gene. Eur. J. Pediatr. 171, 787–793 (2012).

    PubMed  Google Scholar 

  44. Hauffa, B. & Hiort, O. P450 side-chain cleavage deficiency--a rare cause of congenital adrenal hyperplasia. Endocr. Dev. 20, 54–62 (2011).

    CAS  PubMed  Google Scholar 

  45. Krone, N. & Arlt, W. Genetics of congenital adrenal hyperplasia. Best Pract. Res. Clin. Endocrinol. Metab. 23, 181–192 (2009).

    CAS  PubMed  Google Scholar 

  46. Nimkarn, S. & New, M. I. Prenatal diagnosis and treatment of congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Nat. Clin. Pract. Endocrinol. Metab. 3, 405–413 (2007).

    CAS  PubMed  Google Scholar 

  47. New, M. I. et al. Prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies. J. Clin. Endocrinol. Metab. 86, 5651–5657 (2001).

    CAS  PubMed  Google Scholar 

  48. Lajic, S., Nordenström, A. & Hirvikoski, T. Long-term outcome of prenatal dexamethasone treatment of 21-hydroxylase deficiency. Endocr. Dev. 20, 96–105 (2011).

    CAS  PubMed  Google Scholar 

  49. Mercè Fernández-Balsells, M. et al. Prenatal dexamethasone use for the prevention of virilization in pregnancies at risk for classical congenital adrenal hyperplasia because of 21-hydroxylase (CYP21A2) deficiency: a systematic review and meta-analyses. Clin. Endocrinol. (Oxf.) 73, 436–444 (2010).

    Google Scholar 

  50. Reisch, N. et al. High prevalence of reduced fecundity in men with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 94, 1665–1670 (2009).

    CAS  PubMed  Google Scholar 

  51. Hagenfeldt, K. et al. Fertility and pregnancy in outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum. Reprod. 23, 1607–1613 (2008).

    CAS  PubMed  Google Scholar 

  52. Casteràs, A., De Silva, P., Rumsby, G. & Conway, G. S. Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate. Clin. Endocrinol. (Oxf.) 70, 833–837 (2009).

    Google Scholar 

  53. Lo, J. C. et al. Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 84, 930–936 (1999).

    CAS  PubMed  Google Scholar 

  54. Bidet, M. et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95, 1182–1190 (2010).

    CAS  PubMed  Google Scholar 

  55. Flück, C. E. et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat. Genet. 36, 228–230 (2004).

    PubMed  Google Scholar 

  56. Craig, W. Y. et al. Prevalence of steroid sulfatase deficiency in California according to race and ethnicity. Prenat. Diagn. 30, 893–898 (2010).

    PubMed  Google Scholar 

  57. Taylor, N. F. Review: placental sulphatase deficiency. J. Inherit. Metab. Dis. 5, 164–176 (1982).

    CAS  PubMed  Google Scholar 

  58. Hauri-Hohl, A. et al. Aromatase deficiency due to a functional variant in the placenta promoter and a novel missense mutation in the CYP19A1 gene. Clin. Endocrinol. (Oxf.) 75, 39–43 (2011).

    CAS  Google Scholar 

  59. Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C. & Qin, K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80, 3689–3698 (1995).

    CAS  PubMed  Google Scholar 

  60. Dörr, H. G. et al. Longitudinal study of progestins, mineralocorticoids, and glucocorticoids throughout human pregnancy. J. Clin. Endocrinol. Metab. 68, 863–868 (1989).

    PubMed  Google Scholar 

  61. Landau, R. L. & Lugibihl, K. The catabolic and natriuretic effects of progesterone in man. Recent Prog. Horm. Res. 17, 249–292 (1961).

    CAS  PubMed  Google Scholar 

  62. Parker, C. R., Jr., Cutrer, S., Casey, M. L. & MacDonald, P. C. Concentrations of deoxycorticosterone, deoxycorticosterone sulfate, and progesterone in maternal venous serum and umbilical arterial and venous sera. Am. J. Obstet. Gynecol. 145, 427–432 (1983).

    CAS  PubMed  Google Scholar 

  63. Casey, M. L. & MacDonald, P. C. Extraadrenal formation of a mineralocorticosteroid: deoxycorticosterone and deoxycorticosterone sulfate biosynthesis and metabolism. Endocr. Rev. 3, 396–403 (1982).

    CAS  PubMed  Google Scholar 

  64. Carr, B. R., Parker, C. R. Jr, Madden, J. D., MacDonald, P. C. & Porter, J. C. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am. J. Obstet. Gynecol. 139, 416–422 (1981).

    CAS  PubMed  Google Scholar 

  65. Burke, C. W. Biologically active cortisol in plasma of oestrogen-treated and normal subjects. Br. Med. J. 2, 798–800 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sasaki, A. et al. Immunoreactive corticotropin-releasing hormone present in human plasma may be derived from both hypothalamic and extrahypothalamic sources. J. Clin. Endocrinol. Metab. 65, 176–182 (1987).

    CAS  PubMed  Google Scholar 

  67. Baulieu, E. E. & Dray, F. Conversion of H3-dehydroisoandrosterone (3β-hydroxy-Δ5-androsten-17-one) sulfate to H3-estrogens in normal pregnant women. J. Clin. Endocrinol. Metab. 23, 1298–1301 (1963).

    CAS  PubMed  Google Scholar 

  68. Bélisle, S., Schiff, I. & Tulchinsky, D. The use of constant infusion of unlabeled dehydroepiandrosterone for the assessment of its metabolic clearance rate, its half-life, and its conversion into estrogens. J. Clin. Endocrinol. Metab. 50, 117–121 (1980).

    PubMed  Google Scholar 

  69. Crane, M. G., Andes, J. P., Harris, J. J. & Slate, W. G. Primary aldosteronism in pregnancy. Obstet. Gynecol. 23, 200–208 (1964).

    CAS  PubMed  Google Scholar 

  70. Ananth, C. V., Peltier, M. R., Kinzler, W. L., Smulian, J. C. & Vintzileos, A. M. Chronic hypertension and risk of placental abruption: is the association modified by ischemic placental disease? Am. J. Obstet. Gynecol. 197, 273.e1–273.e7 (2007).

    Google Scholar 

  71. Sibai, B. M. Chronic hypertension in pregnancy. Obstet. Gynecol. 100, 369–377 (2002).

    PubMed  Google Scholar 

  72. Chappell, L. C. et al. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension 51, 1002–1009 (2008).

    CAS  PubMed  Google Scholar 

  73. Ronconi, V., Turchi, F., Zennaro, M. C., Boscaro, M. & Giacchetti, G. Progesterone increase counteracts aldosterone action in a pregnant woman with primary aldosteronism. Clin. Endocrinol. (Oxf.) 74, 278–279 (2011).

    Google Scholar 

  74. Biglieri, E. G. & Slaton, P. E. Jr. Pregnancy and primary aldosteronism. J. Clin. Endocrinol. Metab. 27, 1628–1632 (1967).

    CAS  PubMed  Google Scholar 

  75. Aoi, W. et al. Primary aldosteronism aggravated during peripartum period. Jpn Heart J. 19, 946–953 (1978).

    CAS  PubMed  Google Scholar 

  76. Gordon, R. D. & Tunny, T. J. Aldosterone-producing-adenoma (A-P-A): effect of pregnancy. Clin. Exp. Hypertens. A 4, 1685–1693 (1982).

    CAS  PubMed  Google Scholar 

  77. Murakami, T., Watanabe Ogura, E., Tanaka, Y. & Yamamoto, M. High blood pressure lowered by pregnancy. Lancet 356, 1980 (2000).

    CAS  PubMed  Google Scholar 

  78. Quinkler, M., Meyer, B., Oelkers, W. & Diederich, S. Renal inactivation, mineralocorticoid generation, and 11beta-hydroxysteroid dehydrogenase inhibition ameliorate the antimineralocorticoid effect of progesterone in vivo. J. Clin. Endocrinol. Metab. 88, 3767–3772 (2003).

    CAS  PubMed  Google Scholar 

  79. Albiger, N. M. et al. A case of primary aldosteronism in pregnancy: do LH and GNRH receptors have a potential role in regulating aldosterone secretion? Eur. J. Endocrinol. 164, 405–412 (2011).

    CAS  PubMed  Google Scholar 

  80. Wyckoff, J. A. et al. Glucocorticoid-remediable aldosteronism and pregnancy. Hypertension 35, 668–672 (2000).

    CAS  PubMed  Google Scholar 

  81. Funder, J. et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 3266–3281 (2008).

    CAS  PubMed  Google Scholar 

  82. Messina, M., Biffignandi, P., Ghigo, E., Jeantet, M. G. & Molinatti, G. M. Possible contraindication of spironolactone during pregnancy. J. Endocrinol. Invest. 2, 222 (1979).

    CAS  PubMed  Google Scholar 

  83. Groves, T. D. & Corenblum, B. Spironolactone therapy during human pregnancy. Am. J. Obstet. Gynecol. 172, 1655–1656 (1995).

    CAS  PubMed  Google Scholar 

  84. Regitz-Zagrosek, V. et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur. Heart J. 32, 3147–3197 (2011).

    PubMed  Google Scholar 

  85. Al-Ali, N. A., El-Sandabesee, D., Steel, S. A. & Roland, J. M. Conn's syndrome in pregnancy successfully treated with amiloride. J. Obstet. Gynaecol 27, 730–731 (2007).

    CAS  PubMed  Google Scholar 

  86. Cabassi, A., Rocco, R., Berretta, R., Regolisti, G. & Bacchi-Modena, A. Eplerenone use in primary aldosteronism during pregnancy. Hypertension 59, e18–e19 (2012).

    CAS  PubMed  Google Scholar 

  87. Nieman, L. K. et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lado-Abeal, J. et al. Menstrual abnormalities in women with Cushing's disease are correlated with hypercortisolemia rather than raised circulating androgen levels. J. Clin. Endocrinol. Metab. 83, 3083–3088 (1998).

    CAS  PubMed  Google Scholar 

  89. Buescher, M. A., McClamrock, H. D. & Adashi, E. Y. Cushing syndrome in pregnancy. Obstet. Gynecol. 79, 130–137 (1992).

    CAS  PubMed  Google Scholar 

  90. Wallace, C., Toth, E. L., Lewanczuk, R. Z. & Siminoski, K. Pregnancy-induced Cushing's syndrome in multiple pregnancies. J. Clin. Endocrinol. Metab. 81, 15–21 (1996).

    CAS  PubMed  Google Scholar 

  91. Close, C. F., Mann, M. C., Watts, J. F. & Taylor, K. G. ACTH-independent Cushing's syndrome in pregnancy with spontaneous resolution after delivery: control of the hypercortisolism with metyrapone. Clin. Endocrinol. (Oxf.) 39, 375–379 (1993).

    CAS  Google Scholar 

  92. Chui, M. H. et al. Case report: Adrenal LH/hCG receptor overexpression and gene amplification causing pregnancy-induced Cushing's syndrome. Endocr. Pathol. 20, 256–261 (2009).

    PubMed  Google Scholar 

  93. Lacroix, A., Ndiaye, N., Tremblay, J. & Hamet, P. Ectopic and abnormal hormone receptors in adrenal Cushing's syndrome. Endocr. Rev. 22, 75–110 (2001).

    CAS  PubMed  Google Scholar 

  94. Rask, E. et al. Adrenocorticotropin-independent Cushing's syndrome in pregnancy related to overexpression of adrenal luteinizing hormone/human chorionic gonadotropin receptors. J. Endocrinol. Invest. 32, 313–316 (2009).

    CAS  PubMed  Google Scholar 

  95. Wy, L. A. et al. Pregnancy-associated Cushing's syndrome secondary to a luteinizing hormone/human chorionic gonadotropin receptor-positive adrenal carcinoma. Gynecol. Endocrinol. 16, 413–417 (2002).

    CAS  PubMed  Google Scholar 

  96. Lindsay, J. R., Jonklaas, J., Oldfield, E. H. & Nieman, L. K. Cushing's syndrome during pregnancy: personal experience and review of the literature. J. Clin. Endocrinol. Metab. 90, 3077–3083 (2005).

    CAS  PubMed  Google Scholar 

  97. Pricolo, V. E. et al. Management of Cushing's syndrome secondary to adrenal adenoma during pregnancy. Surgery 108, 1072–1077 (1990).

    CAS  PubMed  Google Scholar 

  98. Erichsen, M. M., Husebye, E. S., Michelsen, T. M., Dahl, A. A. & Løvås, K. Sexuality and fertility in women with Addison's disease. J. Clin. Endocrinol. Metab. 95, 4354–4360 (2010).

    PubMed  Google Scholar 

  99. Björnsdottir, S. et al. Addison's disease in women is a risk factor for an adverse pregnancy outcome. J. Clin. Endocrinol. Metab. 95, 5249–5257 (2010).

    PubMed  Google Scholar 

  100. Winqvist, O., Gustafsson, J., Rorsman, F., Karlsson, F. A. & Kämpe, O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J. Clin. Invest. 92, 2377–2385 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Albert, E., Dalaker, K., Jorde, R. & Berge, L. N. Addison's disease and pregnancy. Acta Obstet. Gynecol. Scand. 68, 185–187 (1989).

    CAS  PubMed  Google Scholar 

  102. Ambrosi, B., Barbetta, L. & Morricone, L. Diagnosis and management of Addison's disease during pregnancy. J. Endocrinol. Invest. 26, 698–702 (2003).

    CAS  PubMed  Google Scholar 

  103. Fux Otta, C., Szafryk de Mereshian, P., Iraci, G. S. & Ojeda de Pruneda, M. R. Pregnancies associated with primary adrenal insufficiency. Fertil. Steril. 90, 1199.e17–1199.e20 (2008).

    Google Scholar 

  104. Grinspoon, S. K. & Biller, B. M. Clinical review 62: Laboratory assessment of adrenal insufficiency. J. Clin. Endocrinol. Metab. 79, 923–931 (1994).

    CAS  PubMed  Google Scholar 

  105. Suri, D., Moran, J., Hibbard, J. U., Kasza, K. & Weiss, R. E. Assessment of adrenal reserve in pregnancy: defining the normal response to the adrenocorticotropin stimulation test. J. Clin. Endocrinol. Metab. 91, 3866–3872 (2006).

    CAS  PubMed  Google Scholar 

  106. Drucker, D., Shumak, S. & Angel, A. Schmidt's syndrome presenting with intrauterine growth retardation and postpartum addisonian crisis. Am. J. Obstet. Gynecol. 149, 229–230 (1984).

    CAS  PubMed  Google Scholar 

  107. Lenders, J. W., Eisenhofer, G., Mannelli, M. & Pacak, K. Phaeochromocytoma. Lancet 366, 665–675 (2005).

    PubMed  Google Scholar 

  108. Lenders, J. W. Pheochromocytoma and pregnancy: a deceptive connection. Eur. J. Endocrinol. 166, 143–150 (2012).

    CAS  PubMed  Google Scholar 

  109. Schenker, J. G. & Chowers, I. Pheochromocytoma and pregnancy. Review of 89 cases. Obstet. Gynecol. Surv. 26, 739–747 (1971).

    CAS  PubMed  Google Scholar 

  110. Ahlawat, S. K., Jain, S., Kumari, S., Varma, S. & Sharma, B. K. Pheochromocytoma associated with pregnancy: case report and review of the literature. Obstet. Gynecol. Surv. 54, 728–737 (1999).

    CAS  PubMed  Google Scholar 

  111. Desai, A. S., Chutkow, W. A., Edelman, E., Economy, K. E. & Dec, G. W. Jr. A crisis in late pregnancy. N. Engl. J. Med. 361, 2271–2277 (2009).

    CAS  PubMed  Google Scholar 

  112. Hudsmith, J. G., Thomas, C. E. & Browne, D. A. Undiagnosed phaeochromocytoma mimicking severe preeclampsia in a pregnant woman at term. Int. J. Obstet. Anesth. 15, 240–245 (2006).

    CAS  PubMed  Google Scholar 

  113. Newell, K. A. et al. Pheochromocytoma multisystem crisis. A surgical emergency. Arch. Surg. 123, 956–959 (1988).

    CAS  PubMed  Google Scholar 

  114. Lentschener, C., Gaujoux, S., Tesniere, A. & Dousset, B. Point of controversy: perioperative care of patients undergoing pheochromocytoma removal-time for a reappraisal? Eur. J. Endocrinol. 165, 365–373 (2011).

    CAS  PubMed  Google Scholar 

  115. Mannelli, M. & Bemporad, D. Diagnosis and management of pheochromocytoma during pregnancy. J. Endocrinol. Invest. 25, 567–571 (2002).

    CAS  PubMed  Google Scholar 

  116. Natrajan, P. G., McGarrigle, H. H., Lawrence, D. M. & Lachelin, G. C. Plasma noradrenaline and adrenaline levels in normal pregnancy and in pregnancy-induced hypertension. Br. J. Obstet. Gynaecol 89, 1041–1045 (1982).

    CAS  PubMed  Google Scholar 

  117. Zuspan, F. P. Urinary excretion of epinephrine and norepinephrine during pregnancy. J. Clin. Endocrinol. Metab. 30, 357–360 (1970).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article (researching data for the article, discussion of the content, writing the manuscript, and review or editing of the manuscript before submission).

Corresponding author

Correspondence to William E. Rainey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Adrenal-related hormone levels in pregnant and non-pregnant women (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monticone, S., Auchus, R. & Rainey, W. Adrenal disorders in pregnancy. Nat Rev Endocrinol 8, 668–678 (2012). https://doi.org/10.1038/nrendo.2012.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing