Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SPARC: a key player in the pathologies associated with obesity and diabetes

Abstract

SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin or BM-40) is a widely expressed profibrotic protein with pleiotropic roles, which have been studied in a variety of conditions. Notably, SPARC is linked to human obesity; SPARC derived from adipose tissue is associated with insulin resistance and secretion of SPARC by adipose tissue is increased by insulin and the adipokine leptin. Furthermore, SPARC is associated with diabetes complications such as diabetic retinopathy and nephropathy, conditions that are ameliorated in the Sparc-knockout mouse model. As a regulator of the extracellular matrix, SPARC also contributes to adipose-tissue fibrosis. Evidence suggests that adipose tissue becomes increasingly fibrotic in obesity. Fibrosis of subcutaneous adipose tissue may restrict accumulation of triglycerides in this type of tissue. These triglycerides are, therefore, diverted and deposited as ectopic lipids in other tissues such as the liver or as intramyocellular lipids in skeletal muscle, which predisposes to insulin resistance. Hence, SPARC may represent a novel and important link between obesity and diabetes mellitus. This Review is focused on whether SPARC could be a key player in the pathology of obesity and its related metabolic complications.

Key Points

  • An increase in the levels of SPARC is found in animals and human individuals with obesity and insulin resistance

  • Raised SPARC concentrations are associated with the development of diabetes-associated complications

  • SPARC is involved in strengthening bone but raised concentrations of the protein are associated with increased cardiovascular risk

  • Associations between SPARC and cancer have been postulated, but the exact role of this protein in tumorigenesis is unclear

  • SPARC antagonism may help in the prevention of obesity-related complications

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and functional properties of SPARC.
Figure 2: Regulation of adipose mass by SPARC and leptin.

Similar content being viewed by others

References

  1. Termine, J. D. et al. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99–105 (1981).

    CAS  PubMed  Google Scholar 

  2. Schulz, A., Jundt, G., Berghäuser, K. H., Gehron-Robey, P. & Termine, J. D. Immunohistochemical study of osteonectin in various types of osteosarcoma. Am. J. Pathol. 132, 233–238 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kos, K. et al. Regulation of the fibrosis and angiogenesis promoter SPARC in human adipose tissue by weight change, leptin, insulin and glucose. Diabetes 58, 1780–1788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, M. et al. The expression of SPARC in adipose tissue and its increased plasma concentration in patients with coronary artery disease. Obes. Res. 9, 388–393 (2001).

    CAS  PubMed  Google Scholar 

  5. Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Sage, E. H., Johnson, C. & Bornstein, P. Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J. Biol. Chem. 259, 3993–4007 (1984).

    CAS  PubMed  Google Scholar 

  7. Saltman, D. L., Dolganov, G. M., Warrington, J. A., Wasmuth, J. J. & Lovett, M. A physical map of 15 loci on human chromosome 5q23-q33 by two-color fluorescence in situ hybridization. Genomics 16, 726–732 (1993).

    CAS  PubMed  Google Scholar 

  8. Yan, Q. & Sage, E. H. SPARC, a matricellular glycoprotein with important biological functions. J. Histochem. Cytochem. 47, 1495–1506 (1999).

    CAS  PubMed  Google Scholar 

  9. Stenner, D. D. et al. Monoclonal antibodies to native noncollagenous bone-specific proteins. Proc. Natl Acad. Sci. USA 81, 2868–2872 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sage, E. H. & Vernon, R. B. Regulation of angiogenesis by extracellular matrix: the growth and the glue. J. Hypertens. 12 (Suppl.), S145–S152 (1995).

    Google Scholar 

  11. Sasaki, T. et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243 (1997).

    CAS  PubMed  Google Scholar 

  12. Sasaki, T., Hohenester, E., Göhring, W. & Timpl, R. Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J. 17, 1625–1634 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bornstein, P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 130, 503–506 (1995).

    CAS  PubMed  Google Scholar 

  14. Brekken, R. A. & Sage, E. H. SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 19, 816–827 (2001).

    CAS  PubMed  Google Scholar 

  15. Kupprion, C., Motamed, K. & Sage, E. H. SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J. Biol. Chem. 273, 29635–29640 (1998).

    CAS  PubMed  Google Scholar 

  16. Ruhrberg, C. Growing and shaping the vascular tree: Multiple roles for VEGF. Bioessays 25, 1052–1060 (2003).

    CAS  PubMed  Google Scholar 

  17. Francki, A. & Sage, E. H. SPARC and the kidney glomerulus: matricellular proteins exhibit diverse functions under normal and pathological conditions. Trends Cardiovasc. Med. 11, 32–37 (2001).

    CAS  PubMed  Google Scholar 

  18. Long, M. W. Osteogenesis and bone-marrow-derived cells. Blood Cells Mol. Dis. 27, 677–690 (2001).

    CAS  PubMed  Google Scholar 

  19. Jørgensen, L. H. et al. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 57, 29–39 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Tartare-Deckert, S., Chavey, C., Monthouel, M. N., Gautier, N. & Van Obberghen, E. The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. J. Biol. Chem. 276, 22231–22237 (2001).

    CAS  PubMed  Google Scholar 

  21. Clark, C. J. & Sage, E. H. A prototypic matricellular protein in the tumor microenvironment—where there's SPARC, there's fire. J. Cell. Biochem. 104, 721–732 (2008).

    CAS  PubMed  Google Scholar 

  22. Nie, J. et al. IFATS collection: Combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 26, 2735–2745 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelm, R. J. Jr, Swords, N. A., Orfeo, T. & Mann, K. G. Osteonectin in matrix remodeling. A plasminogen-osteonectin-collagen complex. J. Biol. Chem. 269, 30147–30153 (1994).

    CAS  PubMed  Google Scholar 

  24. Barker, T. H. et al. Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis. Am. J. Pathol. 166, 923–933 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Delany, A. M. et al. Osteopenia and decreased bone formation in osteonectin-deficient mice. J. Clin. Invest. 105, 915–923 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mansergh, F. C. et al. Osteopenia in Sparc (osteonectin)-deficient mice: characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiol. Genomics 32, 64–73 (2007).

    CAS  PubMed  Google Scholar 

  27. Gilmour, D. T. et al. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J. 17, 1860–1870 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bradshaw, A. D. et al. SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J. Invest. Dermatol. 120, 949–955 (2003).

    CAS  PubMed  Google Scholar 

  29. Bradshaw, A. D., Graves, D. C., Motamed, K. & Sage, E. H. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc. Natl Acad. Sci. USA 100, 6045–6050 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Colditz, G. A., Willett, W. C., Rotnitzky, A. & Manson, J. E. Weight gain as a risk factor for clinical diabetes in women. Ann. Intern. Med. 122, 481–486 (1995).

    CAS  PubMed  Google Scholar 

  31. International Diabetes Federation. IDF Consensus Worldwide Definition of the Metabolic Syndrome [online], (2006).

  32. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).

    PubMed  Google Scholar 

  33. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    PubMed  Google Scholar 

  34. Chun, T. H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    CAS  PubMed  Google Scholar 

  35. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: the role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  36. Danforth, E. Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat. Genet. 26, 13 (2000).

    CAS  PubMed  Google Scholar 

  37. Lee, D. E., Kehlenbrink, S., Lee, H., Hawkins, M. A. & Yudkin, J. S. Getting the message across: mechanisms of physiological cross-talk by adipose tissue. Am. J. Physiol. Endocrinol. Metab. 296, E1210–E1229 (2009).

    CAS  PubMed  Google Scholar 

  38. Wong, S. P. et al. Adipokines and the insulin resistance syndrome in familial partial lipodystrophy caused by a mutation in lamin A/C. Diabetologia 48, 2641–2649 (2005).

    CAS  PubMed  Google Scholar 

  39. Greenstein, A. S. et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119, 1661–1670 (2009).

    CAS  PubMed  Google Scholar 

  40. Guzik, T. J., Marvar, P. J., Czesnikiewicz-Guzik, M. & Korbut, R. Perivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction. J. Physiol. Pharmacol. 58, 591–610 (2007).

    CAS  PubMed  Google Scholar 

  41. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong, S. P. et al. Adipokines and the insulin resistance syndrome in familial partial lipodystrophy caused by a mutation in lamin A/C. Diabetologia 48, 2641–2649 (2005).

    CAS  PubMed  Google Scholar 

  43. Ravussin, E. & Smith, S. R. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann. NY Acad. Sci. 967, 363–378 (2002).

    CAS  PubMed  Google Scholar 

  44. Després, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    PubMed  Google Scholar 

  45. Trayhurn, P. & Beattie, J. H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60, 329–339 (2001).

    CAS  PubMed  Google Scholar 

  46. Kos, K. & Wilding, J. P. Adipokines: Emerging therapeutic targets. Curr. Opin. Investig. Drugs 10, 1061–1068 (2009).

    CAS  PubMed  Google Scholar 

  47. Berg, A. & Scherer, P. E. Adipose tissue, inflammation and cardiovascular risk. Circ. Res. 96, 939–949 (2005).

    CAS  PubMed  Google Scholar 

  48. Fantuzzi, G. & Mazzone, T. Adipose tissue and atherosclerosis: exploring the connection. Aterioscler. Thromb. Vasc. Biol. 27, 996–1003 (2007).

    CAS  Google Scholar 

  49. Keophiphath, M. et al. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol. Endocrinol. 23, 11–24 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Skurk, T. et al. Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 146, 1006–1011 (2005).

    CAS  PubMed  Google Scholar 

  51. Halberg, N. et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Trayhurn, P. & Wood, I. S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355 (2004).

    CAS  PubMed  Google Scholar 

  53. Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).

    CAS  PubMed  Google Scholar 

  54. Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, B., Wood, I. S. & Trayhurn, P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch. 455, 479–492 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Higami, Y. et al. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J. Nutr. 136, 343–352 (2006).

    CAS  PubMed  Google Scholar 

  57. Chavey, C. et al. Regulation of secreted protein acidic and rich in cysteine during adipose conversion and adipose tissue hyperplasia. Obesity 14, 1890–1897 (2006).

    CAS  PubMed  Google Scholar 

  58. Nie, J. & Sage, E. H. SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. J. Biol. Chem. 284, 1279–1290 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. O'Connor, K. C., Song, H., Rosenzweig, N. & Jansen, D. A. Extracellular matrix substrata alter adipocyte yield and lipogenesis in primary cultures of stromal-vascular cells from human adipose. Biotechnol. Lett. 25, 1967–1972 (2003).

    CAS  PubMed  Google Scholar 

  60. Barker, T. H. et al. SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280, 36483–36493 (2005).

    CAS  PubMed  Google Scholar 

  61. Fliers, E. et al. White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003).

    CAS  PubMed  Google Scholar 

  62. Ricci, M. R. et al. Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am. J. Physiol. Endocrinol. Metab. 288, E798–E804 (2005).

    CAS  PubMed  Google Scholar 

  63. Masson, S. et al. Remodelling of cardiac extracellular matrix during beta-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats. J. Mol. Cell. Cardiol. 30, 1505–1514 (1998).

    CAS  PubMed  Google Scholar 

  64. Baumann, E., Preston, E., Slinn, J. & Stanimirovic, D. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res. 1269, 185–197 (2009).

    CAS  PubMed  Google Scholar 

  65. Vincent, A. J., Lau, P. W. & Roskams, A. J. SPARC is expressed by macroglia and microglia in the developing and mature nervous system. Dev. Dyn. 237, 1449–1462 (2008).

    PubMed  Google Scholar 

  66. Wu, R. X. et al. Fibroblast migration after myocardial infarction is regulated by transient SPARC expression. J. Mol. Med. 84, 241–252 (2006).

    CAS  PubMed  Google Scholar 

  67. Nakamura, S. et al. Enhancement of SPARC (osteonectin) synthesis in arthritic cartilage Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures. Arthritis Rheum. 39, 539–551 (1996).

    CAS  PubMed  Google Scholar 

  68. Kzhyshkowska, J. et al. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J. Immunol. 176, 5825–5832 (2006).

    CAS  PubMed  Google Scholar 

  69. Naïmi, M. & Van Obberghen, E. Inflammation: where is the SPARC in adipose-tissue inflammation? Nat. Rev. Endocrinol. 5, 648–649 (2009).

    PubMed  Google Scholar 

  70. Koukourakis, M. I. et al. Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res. 63, 5376–5380 (2003).

    CAS  PubMed  Google Scholar 

  71. Wang, B., Wood, I. S. & Trayhurn, P. Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression in preadipocytes. J. Endocrinol. 198, 127–134 (2008).

    CAS  PubMed  Google Scholar 

  72. Chlenski A. et al. SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int. J. Cancer. 118, 310–316 (2006).

    CAS  PubMed  Google Scholar 

  73. Sage, E. H. et al. Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J. Biol. Chem. 278, 37849–37857 (2003).

    CAS  PubMed  Google Scholar 

  74. Fain, J. N., Tichansky, D. S. & Madan, A. K. Transforming growth factor β1 release by human adipose tissue is enhanced in obesity. Metabolism 54, 1546–1551 (2005).

    CAS  PubMed  Google Scholar 

  75. Wolf, G. et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 56, 860–872 (1999).

    CAS  PubMed  Google Scholar 

  76. Kao, Y. H. et al. Serum factors potentiate hypoxia-induced hepatotoxicity in vitro through increasing transforming growth factor-beta1 activation and release. Cytokine 47, 11–22 (2009).

    CAS  PubMed  Google Scholar 

  77. Higgins, D. F., Kimura, K., Iwano, M. & Haase, V. H. Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7, 1128–1132 (2008).

    CAS  PubMed  Google Scholar 

  78. Oltmanns, K. M. et al. Hypoxia causes glucose intolerance in humans. Am. J. Respir. Crit. Care Med. 169, 1231–1237 (2004).

    PubMed  Google Scholar 

  79. Jakobsson, P. & Jorfeldt, L. Oxygen supplementation increases glucose tolerance during euglycaemic hyperinsulinaemic glucose clamp procedure in patients with severe COPD and chronic hypoxaemia. Clin. Physiol. Funct. Imaging 26, 271–274 (2006).

    CAS  PubMed  Google Scholar 

  80. Munjal, I. D., McLean, N. V., Grant, M. B. & Blake, D. A. Differences in the synthesis of secreted proteins in human retinal endothelial cells of diabetic and nondiabetic origin. Curr. Eye Res. 13, 303–310 (1994).

    CAS  PubMed  Google Scholar 

  81. Ratnayaka, A. et al. Trafficking of osteonectin by retinal pigment epithelial cells: evidence for basolateral secretion. Int. J. Biochem. Cell Biol. 39, 85–92 (2007).

    CAS  PubMed  Google Scholar 

  82. Grimes, P. A., McGlinn, A., Laties, A. M. & Naji, A. Increase of basal cell membrane area of the retinal pigment epithelium in experimental diabetes. Exp. Eye Res. 38, 569–577 (1984).

    CAS  PubMed  Google Scholar 

  83. Chakrabarti, S., Prashar, S. & Sima, A. A. Augmented polyol pathway activity and retinal pigment epithelial permeability in the diabetic BB rat. Diabetes Res. Clin. Pract. 8, 1–11 (1990).

    CAS  PubMed  Google Scholar 

  84. Watanabe, K. et al. SPARC is a major secretory gene expressed and involved in the development of proliferative diabetic retinopathy. J. Atheroscler. Thromb. 16, 69–76 (2009).

    CAS  PubMed  Google Scholar 

  85. Rowe, N. G., Mitchell, P. G., Cumming, R. G. & Wans, J. J. Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol. 7, 103–114 (2000).

    CAS  PubMed  Google Scholar 

  86. Yue, D. K. et al. Effects of experimental diabetes, uremia, and malnutrition on wound healing. Diabetes 36, 295–299 (1987).

    CAS  PubMed  Google Scholar 

  87. Kanauchi, M., Nishioka, M. & Dohi, K. Secreted protein acidic and rich in cysteine (SPARC) in patients with diabetic nephropathy and tubulointerstitial injury. Diabetologia 43, 1076–1077 (2000).

    CAS  PubMed  Google Scholar 

  88. Taneda, S. et al. Amelioration of diabetic nephropathy in SPARC-null mice. J. Am. Soc. Nephrol. 14, 968–980 (2003).

    CAS  PubMed  Google Scholar 

  89. Kanauchi, M., Nishioka, H., Kawano, T. & Dohi, K. Role of secreted protein acidic and rich in cysteine (SPARC) in patients with diabetic nephropathy. Clin. Exper. Nephrol. 1, 115–120 (1997).

    Google Scholar 

  90. Reding, T. et al. Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis. Physiol. Genomics 38, 196–204 (2009).

    CAS  PubMed  Google Scholar 

  91. Clark, A. et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 9, 151–159 (1988).

    CAS  PubMed  Google Scholar 

  92. Hayden, M. R. et al. Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: pancreatic extracellular matrix ultrastructural abnormalities. J. Cardiometab. Syndr. 3, 234–243 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. McCurdy, S., Baicu, C. F., Heymans, S. & Bradshaw, A. D. Cardiac extracellular matrix remodeling: Fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J. Mol. Cell Cardiol. doi:10.1016/j.yjmcc.2009.06.018.

    CAS  PubMed  Google Scholar 

  94. Schellings, M. W. et al. Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J. Exp. Med. 206, 113–123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Powell, B. D., Redfield, M. M., Bybee, K. A., Freeman, W. K. & Rihal, C. S. Association of obesity with left ventricular remodeling and diastolic dysfunction in patients without coronary artery disease. Am. J. Cardiol. 98, 116–120 (2006).

    PubMed  Google Scholar 

  96. Bradshaw, A. D. et al. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119, 269–280 (2009).

    CAS  PubMed  Google Scholar 

  97. Raines, E. W., Lane, T. F., Iruela-Arispe, M. L., Ross, R. & Saga, E. H. The extracellular glycoprotein SPARC interacts with platelet derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc. Natl Acad. Sci. USA 89, 1281–1285 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sangaletti, S. et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 68, 9050–9059 (2008).

    CAS  PubMed  Google Scholar 

  99. Said, N. & Motamed, K. Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. Am. J. Pathol. 167, 1739–1752 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Podhajcer, O. L. et al. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev. 27, 523–537 (2008).

    CAS  PubMed  Google Scholar 

  101. Kögel, D., Schomburg, R., Copanaki, E. & Prehn, J. H. Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell Death Differ. 12, 1–9 (2005).

    PubMed  Google Scholar 

  102. Kelly, K. A. et al. SPARC is a VCAM-1 counter-ligand that mediates leukocyte transmigration. J. Leukc. Biol. 81, 748–756 (2007).

    CAS  Google Scholar 

  103. Lago, R., Gómez, R., Lago, F., Gómez-Reino, J. & Gualillo, O. Leptin beyond body weight regulation-current concepts concerning its role in immune function and inflammation. Cell. Immunol. 252, 139–145 (2008).

    CAS  PubMed  Google Scholar 

  104. Zhao, L. J. et al. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 92, 1640–1646 (2007).

    CAS  PubMed  Google Scholar 

  105. Kessler, C. B. & Delany, A. M. Increased Notch 1 expression and attenuated stimulatory G protein coupling to adenylyl cyclase in osteonectin-null osteoblasts. Endocrinology 148, 1666–1674 (2007).

    CAS  PubMed  Google Scholar 

  106. Hecht, J. T. & Sage, E. H. Retention of the matricellular protein SPARC in the endoplasmic reticulum of chondrocytes from patients with pseudoachondroplasia. J. Histochem. Cytochem. 54, 269–274 (2006).

    CAS  PubMed  Google Scholar 

  107. Gruber, H. E. et al. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J. Histochem. Cytochem. 53, 1131–1138 (2005).

    CAS  PubMed  Google Scholar 

  108. Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl Acad. Sci. USA 105, 20529–20533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lindsey, M. L. et al. Age-dependent changes in myocardial matrix metalloproteinase profiles and fibroblast function. Cardiovasc. Res. 66, 410–419 (2005).

    CAS  PubMed  Google Scholar 

  110. Bradshaw, A. D. & Sage, E. H. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J. Clin. Invest. 107, 1049–1054 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lane, T. F. & Sage, E. H. The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J. 8, 163–173 (1994).

    CAS  PubMed  Google Scholar 

  112. Reed, M. J. et al. Enhanced angiogenesis characteristic of SPARC-null mice disappears with age. J. Cell Physiol. 204, 800–807 (2005).

    CAS  PubMed  Google Scholar 

  113. Lecka-Czernik, B., Moerman, E. J., Jones, R. A. & Goldstein, S. Identification of gene sequences overexpressed in senescent and Werner syndrome human fibroblasts. Exp. Gerontol. 31, 159–174 (1996).

    CAS  PubMed  Google Scholar 

  114. Pan, M. R., Chang, H. C., Chuang, L. Y. & Hung, W. C. The nonsteroidal anti-inflammatory drug NS398 reactivates SPARC expression via promoter demethylation to attenuate invasiveness of lung cancer cells. Exp. Biol. Med. 233, 456–462 (2008).

    CAS  Google Scholar 

  115. Li, M., Wu, X. & Xu, X. C. Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin. Cancer Res. 7, 1010–1016 (2001).

    CAS  PubMed  Google Scholar 

  116. Li, M., Wu, X. & Xu, X. C. Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochrome C-dependent pathway in esophageal cancer cells. Int. J. Cancer 93, 218–223 (2001).

    CAS  PubMed  Google Scholar 

  117. Camino, A. M. et al. Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats. J. Gene Med. 10, 993–1004 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Kos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kos, K., Wilding, J. SPARC: a key player in the pathologies associated with obesity and diabetes. Nat Rev Endocrinol 6, 225–235 (2010). https://doi.org/10.1038/nrendo.2010.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing