Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models for metabolic, neuromuscular and ophthalmological rare diseases

Key Points

  • Animal models are important tools in the discovery and development of treatments for rare diseases, particularly given the small populations of patients in which to evaluate therapeutic candidates.

  • Numerous animal models are available for research on rare diseases, from small transgenic rodents to large animals with naturally occurring disease.

  • The European Medicines Agency (EMA)'s Committee for Orphan Medicinal Products has more than 10 years of experience in evaluating orphan medicinal products (OMPs) and is well placed to review the mammalian animal models, past and present, used for OMP development.

  • Proof-of-concept studies of candidate therapeutics in animal models aim to evaluate their efficacy using clearly defined biomarkers and to confirm and/or clarify the anticipated mechanism of action, thus providing a foundation for initiating studies in patients with the orphan disease in question.

  • In this article, we provide an in-depth discussion of the animal models that are available for proof-of-concept studies in metabolic, neuromuscular and ophthalmological diseases designated as orphan conditions.

  • Aspects and concerns discussed relate to the choice of animal species available for study, the improvements to non-clinical experimental designs and the challenges of evaluating advanced therapies in the field of rare diseases.

  • The overall aim of this article is to encourage more efficient and successful research and development of OMPs for rare diseases.

Abstract

Animal models are important tools in the discovery and development of treatments for rare diseases, particularly given the small populations of patients in which to evaluate therapeutic candidates. Here, we provide a compilation of mammalian animal models for metabolic, neuromuscular and ophthalmological orphan-designated conditions based on information gathered by the European Medicines Agency's Committee for Orphan Medicinal Products (COMP) since its establishment in 2000, as well as from a review of the literature. We discuss the predictive value of the models and their advantages and limitations with the aim of highlighting those that are appropriate for the preclinical evaluation of novel therapies, thereby facilitating further drug development for rare diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Animal models presented to the European Medicines Agency's Committee for Orphan Medicinal Products.

Similar content being viewed by others

References

  1. Westermark, K. et al. European regulation on orphan medicinal products: 10 years of experience and future perspectives. Nature Rev. Drug Discov. 10, 341–349 (2011).

    CAS  Google Scholar 

  2. Winchester, B., Vellodi, A. & Young, E. The molecular basis of lysosomal storage diseases and their treatment. Biochem. Soc. Trans. 28, 150–154 (2000).

    CAS  PubMed  Google Scholar 

  3. Mehta, A., Beck, M. & Sunder-Plassmann, G. (eds) Fabry Disease: Perspectives from 5 Years of FOS (Oxford PharmaGenesis, 2006).

    Google Scholar 

  4. Mornet, E. Hypophosphatasia. Orphanet J. Rare Dis. 2, 40 (2007).

    PubMed  PubMed Central  Google Scholar 

  5. Nordmann, Y. & Puy, H. Human hereditary hepatic porphyrias. Clin. Chim. Acta 325, 17–37 (2002).

    CAS  PubMed  Google Scholar 

  6. Hoffmann, B. Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring. Orphanet J. Rare Dis. 4, 21 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Ohshima, T. et al. α-Galactosidase A deficient mice: a model of Fabry disease. Proc. Natl Acad. Sci. USA 94, 2540–2544 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodrigues, L. G. et al. Neurophysiological, behavioral and morphological abnormalities in the Fabry knockout mice. Neurobiol. Dis. 33, 48–56 (2009). This is a review of a useful knockout mouse model of Fabry's disease that displays Gb3 accumulation in the peripheral nervous system.

    CAS  PubMed  Google Scholar 

  9. Haskins, M. Gene therapy for lysosomal storage diseases (LSDs) in large animal models. ILAR J. 50, 112–121 (2009). This paper describes natural animal models available for LSDs, and refers to the transgenic primate model of Huntington's disease.

    CAS  PubMed  Google Scholar 

  10. Fan, J. Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med. 5, 112–115 (1999).

    CAS  PubMed  Google Scholar 

  11. Ishii, S., Yoshioka, H., Mannen, K., Kulkarni, A. B. & Fan, J.-Q. Transgenic mouse expressing human mutant α-galactosidase A in an endogenous enzyme deficient background: a biochemical animal model for studying active-site specific chaperone therapy for Fabry disease. Biochim. Biophys. Acta 1690, 250–257 (2004).

    CAS  PubMed  Google Scholar 

  12. Shiozuka, C. et al. Increased globotriaosylceramide levels in a transgenic mouse expressing human α1,4-galactosyltransferase and a mouse model for treating Fabry disease. J. Biochem. 149, 161–170 (2011).

    CAS  PubMed  Google Scholar 

  13. Tybulewicz, V. L. et al. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357, 407–410 (1992).

    CAS  PubMed  Google Scholar 

  14. European Medicines Agency (EMA). EPAR summary for the public: Zavesca (miglustat). EMA website[online], (2010).

  15. Yamanaka, S. et al. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay–Sachs disease. Proc. Natl Acad. Sci. USA 91, 9975–9979 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sango, K. et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genet. 11, 170–176 (1995).

    CAS  PubMed  Google Scholar 

  17. Hahn, C. N. et al. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid β-galactosidase. Hum. Mol. Genet. 6, 205–211 (1997).

    CAS  PubMed  Google Scholar 

  18. Farfel-Becker, T., Vitner, E. B. & Futerman, A. H. Animal models for Gaucher disease research. Dis. Model. Mech. 4, 746–752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y. et al. Mice with type 2 and 3 Gaucher disease point mutations generated by a single insertion mutagenesis procedure. Proc. Natl Acad. Sci. USA 95, 2503–2508 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mizukami, H. et al. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. J. Clin. Invest. 109, 1215–1221 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, Y.-H., Quinn, B., Witte, D. & Grabowski, G. A. Viable mouse models of acid β-glucosidase deficiency: the defect in Gaucher disease. Am. J. Pathol. 163, 2093–2101 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Y.-H. et al. Dependence of reversibility and progression of mouse neuronopathic Gaucher disease on acid β-glucosidase residual activity levels. Mol. Genet. Metab. 94, 190–203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beutler, E., West, C., Torbett, B. E. & Deguchi, H. A chimeric mouse model of Gaucher disease. Mol. Med. 8, 247–250 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muenzer, J. Overview of the mucopolysaccharidoses. Rheumatology 50 (Suppl. 5), 4–12 (2011).

    Google Scholar 

  25. Haskins, M. E., Aguirre, G. D., Jezyk, P. F., Desnick, R. J. & Patterson, D. F. The pathology of the feline model of mucopolysaccharidosis I. Am. J. Pathol. 112, 27–36 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shull, R. M. et al. Morphologic and biochemical studies of canine mucopolysaccharidosis I. Am. J. Pathol. 114, 487–495 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Rivera, M. F. et al. Characterization of an immunodeficient mouse model of mucopolysaccharidosis type I suitable for preclinical testing of human stem cell and gene therapy. Brain Res. Bull. 74, 429–438 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Muenzer, J. et al. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr. Suppl. 91, 98–99 (2002).

    CAS  PubMed  Google Scholar 

  29. Bhaumik, M. et al. A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology 9, 1389–1396 (1999).

    CAS  PubMed  Google Scholar 

  30. Jolly, R. D., Johnstone, A. C., Norman, E. J., Hopwood, J. J. & Walkley, S. U. Pathology of mucopolysaccharidosis IIIA in Huntaway dogs. Vet. Pathol. 44, 569–578 (2007).

    CAS  PubMed  Google Scholar 

  31. Crawley, A. C. et al. Enzyme replacement therapy in a feline model of Maroteaux–Lamy syndrome. J. Clin. Invest. 97, 1864–1873 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomatsu, S. et al. Mouse model of N-acetylgalactosamine-6-sulfate sulfatase deficiency (Galns−/−) produced by targeted disruption of the gene defective in Morquio A disease. Hum. Mol. Genet. 12, 3349–3358 (2003).

    CAS  PubMed  Google Scholar 

  33. Tomatsu, S. et al. Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum. Mol. Genet. 14, 3321–3335 (2005). As there is no large animal model available for type IV MPS, this model is very relevant for proof-of-concept studies for ERTs.

    CAS  PubMed  Google Scholar 

  34. Brown, D. E. et al. Feline Niemann–Pick disease type C. Am. J. Pathol. 144, 1412–1415 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarna, J. R. et al. Patterned Purkinje cell degeneration in mouse models of Niemann–Pick type C disease. J. Comp. Neurol. 456, 279–291 (2003).

    PubMed  Google Scholar 

  36. Horinouchi, K. et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann–Pick disease. Nature Genet. 10, 288–293 (1995).

    CAS  PubMed  Google Scholar 

  37. Miranda, S. R. et al. Infusion of recombinant human acid sphingomyelinase into Niemann–Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J. 14, 1988–1995 (2000).

    CAS  PubMed  Google Scholar 

  38. Raben, N. et al. Targeted disruption of the acid α-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J. Biol. Chem. 273, 19086–19092 (1998).

    CAS  PubMed  Google Scholar 

  39. Mah, C. et al. Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther. 12, 1405–1409 (2005).

    CAS  PubMed  Google Scholar 

  40. DeRuisseau, L. R. et al. Neural deficits contribute to respiratory insufficiency in Pompe disease. Proc. Natl Acad. Sci. USA 106, 9419–9424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walvoort, H. C., Dormans, J. A. & Van den Ingh, T. S. Comparative pathology of the canine model of glycogen storage disease type II (Pompe's disease). J. Inherit. Metab. Dis. 8, 38–46 (1985).

    CAS  PubMed  Google Scholar 

  42. Sidman, R. L. et al. Temporal neuropathologic and behavioral phenotype of 6neo/6neo Pompe disease mice. J. Neuropathol. Exp. Neurol. 67, 803–818 (2008).

    PubMed  Google Scholar 

  43. Sun, H. & Wolfe, J. H. Recent progress in lysosomal α-mannosidase and its deficiency. Exp. Mol. Med. 33, 1–7 (2001).

    CAS  PubMed  Google Scholar 

  44. Raghavan, S., Stuer, G., Riviere, L., Alroy, J. & Kolodny, E. H. Characterization of α-mannosidase in feline mannosidosis. J. Inherit. Metab. Dis. 11, 3–16 (1988).

    CAS  PubMed  Google Scholar 

  45. Stinchi, S. et al. Targeted disruption of the lysosomal α-mannosidase gene results in mice resembling a mild form of human α-mannosidosis. Hum. Mol. Genet. 8, 1365–1372 (1999).

    CAS  PubMed  Google Scholar 

  46. Roces, D. P. et al. Efficacy of enzyme replacement therapy in α-mannosidosis mice: a preclinical animal study. Hum. Mol. Genet. 13, 1979–1988 (2004).

    CAS  PubMed  Google Scholar 

  47. Vite, C. H. et al. Effective gene therapy for an inherited CNS disease in a large animal model. Ann. Neurol. 57, 355–364 (2005).

    CAS  PubMed  Google Scholar 

  48. Lindberg, R. L. et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nature Genet. 12, 195–199 (1996).

    CAS  PubMed  Google Scholar 

  49. Johansson, A., Möller, C., Fogh, J. & Harper, P. Biochemical characterization of porphobilinogen deaminase-deficient mice during phenobarbital induction of heme synthesis and the effect of enzyme replacement. Mol. Med. 9, 193–199 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Clavero, S. et al. Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations. Hum. Mol. Genet. 19, 584–596 (2010).

    CAS  PubMed  Google Scholar 

  51. Narisawa, S., Fröhlander, N. & Millán, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).

    CAS  PubMed  Google Scholar 

  52. Millán, J. L. et al. Enzyme replacement therapy for murine hypophosphatasia. J. Bone Miner. Res. 23, 777–787 (2008).

    PubMed  Google Scholar 

  53. Wijesekera, L. C. & Leigh, P. N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 4, 3 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Kato, S. Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences. Acta Neuropathol. 115, 97–114 (2008).

    PubMed  Google Scholar 

  55. Gurney, M. E. Transgenic animal models of familial amyotrophic lateral sclerosis. J. Neurol. 244 (Suppl. 2), 15–20 (1997).

    Google Scholar 

  56. Harraz, M. M. et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J. Clin. Invest. 118, 659–670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tovar-Y-Romo, L. B., Santa-Cruz, L. D. & Tapia, R. Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis. Mol. Neurodegener. 4, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 26, 1–13 (2007). This provides a discussion on the lack of predictive accuracy of the SOD1 mouse model of ALS, in light of the 10 years of experience gained.

    CAS  PubMed  Google Scholar 

  59. Cai, H. et al. ALS2/alsin knockout mice and motor neuron diseases. Neurodegener. Dis. 5, 359–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Laird, F. M. et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci. 28, 1997–2005 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Corona, J. C. & Tapia, R. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J. Neurochem. 89, 988–997 (2004).

    CAS  PubMed  Google Scholar 

  62. Mitsumoto, H. & Bradley, W. G. Murine motor neuron disease (the Wobbler mouse): degeneration and regeneration of the lower motor neuron. Brain 105, 811–834 (1982).

    PubMed  Google Scholar 

  63. Schmalbruch, H., Jensen, H. J., Bjaerg, M., Kamieniecka, Z. & Kurland, L. A new mouse mutant with progressive motor neuronopathy. J. Neuropathol. Exp. Neurol. 50, 192–204 (1991).

    CAS  PubMed  Google Scholar 

  64. Vejsada, R. et al. Motor functions in rat hindlimb muscles following neonatal sciatic nerve crush. Neuroscience 40, 267–275 (1991).

    CAS  PubMed  Google Scholar 

  65. Mentis, G. Z., Díaz, E., Moran, L. B. & Navarrete, R. Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy. J. Physiol. 582, 1141–1161 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    CAS  PubMed  Google Scholar 

  67. Schilling, G. et al. Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J. Neuropathol. Exp. Neurol. 66, 313–320 (2007).

    CAS  PubMed  Google Scholar 

  68. Van Raamsdonk, J. M., Murphy, Z., Slow, E. J., Leavitt, B. R. & Hayden, M. R. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 3823–3835 (2005).

    CAS  PubMed  Google Scholar 

  69. Wang, L. & Qin, Z. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies. Acta Pharmacol. Sin. 27, 1287–1302 (2006).

    CAS  PubMed  Google Scholar 

  70. Menalled, L. B. Knock-in mouse models of Huntington's disease. NeuroRx 2, 465–470 (2005).

    PubMed  PubMed Central  Google Scholar 

  71. Heng, M. Y., Detloff, P. J. & Albin, R. L. Rodent genetic models of Huntington disease. Neurobiol. Dis. 32, 1–9 (2008).

    CAS  PubMed  Google Scholar 

  72. Winkler, C. et al. Normal sensitivity to excitotoxicity in a transgenic Huntington's disease rat. Brain Res. Bull. 69, 306–310 (2006).

    CAS  PubMed  Google Scholar 

  73. Beal, M. F. et al. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13, 4181–4192 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gagliardi, C. & Bunnell, B. A. Large animal models of neurological disorders for gene therapy. ILAR J. 50, 128–143 (2009).

    CAS  PubMed  Google Scholar 

  75. Chan, A. W. S. & Yang, S.-H. Generation of transgenic monkeys with human inherited genetic disease. Methods 49, 78–84 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lang, B. & Vincent, A. Autoimmune disorders of the neuromuscular junction. Curr. Opin. Pharmacol. 9, 336–340 (2009).

    CAS  PubMed  Google Scholar 

  77. Christadoss, P., Poussin, M. & Deng, C. Animal models of myasthenia gravis. Clin. Immunol. 94, 75–87 (2000).

    CAS  PubMed  Google Scholar 

  78. Galin, F. S. et al. Possible therapeutic vaccines for canine myasthenia gravis: implications for the human disease and associated fatigue. Brain Behav. Immun. 21, 323–331 (2007). This paper describes a homologous model in which an interesting proof of concept was made.

    CAS  PubMed  Google Scholar 

  79. Van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    CAS  PubMed  Google Scholar 

  80. Yuki, N. et al. Animal model of axonal Guillain–Barré syndrome induced by sensitization with GM1 ganglioside. Ann. Neurol. 49, 712–720 (2001).

    CAS  PubMed  Google Scholar 

  81. Flink, M. T. & Atchison, W. D. Passive transfer of Lambert–Eaton syndrome to mice induces dihydropyridine sensitivity of neuromuscular transmission. J. Physiol. 543, 567–576 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, Y. I. et al. An autoimmune animal model of the Lambert–Eaton syndrome. Ann. NY Acad. Sci. 841, 670–676 (1998).

    CAS  PubMed  Google Scholar 

  83. Duclos, F. et al. Progressive muscular dystrophy in α-sarcoglycan-deficient mice. J. Cell Biol. 142, 1461–1471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fougerousse, F. et al. Phenotypic correction of α-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol. Ther. 15, 53–61 (2007).

    CAS  PubMed  Google Scholar 

  85. Kramerova, I., Beckmann, J. S. & Spencer, M. J. Molecular and cellular basis of calpainopathy (limb girdle muscular dystrophy type 2A). Biochim. Biophys. Acta 1772, 128–144 (2007).

    CAS  PubMed  Google Scholar 

  86. Fougerousse, F., Gonin, P., Durand, M., Richard, I. & Raymackers, J.-M. Force impairment in calpain 3-deficient mice is not correlated with mechanical disruption. Muscle Nerve 27, 616–623 (2003).

    CAS  PubMed  Google Scholar 

  87. Bartoli, M. et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not α-sarcoglycan deficiency. Gene Ther. 14, 733–740 (2007).

    CAS  PubMed  Google Scholar 

  88. Rivas, M. A. & Vecino, E. Animal models and different therapies for treatment of retinitis pigmentosa. Histol. Histopathol. 24, 1295–1322 (2009). This is a comprehensive review of transgenic and natural animal models for retinitis pigmentosa.

    CAS  PubMed  Google Scholar 

  89. Chader, G. J. Animal models in research on retinal degenerations: past progress and future hope. Vision Res. 42, 393–399 (2002).

    PubMed  Google Scholar 

  90. Weng, J. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999).

    CAS  PubMed  Google Scholar 

  91. Vasireddy, V. et al. Elovl4 5-bp-deletion knock-in mice develop progressive photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 47, 4558–4568 (2006).

    PubMed  Google Scholar 

  92. Keeler, C. E. The inheritance of a retinal abnormality in white mice. Proc. Natl Acad. Sci. USA 10, 329–333 (1924).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bourne, M. C., Campbell, D. A. & Tansley, K. Hereditary degeneration of the rat retina. Br. J. Ophthalmol. 22, 613–623 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang, B. et al. Retinal degeneration mutants in the mouse. Vision Res. 42, 517–525 (2002).

    CAS  PubMed  Google Scholar 

  95. Pang, J.-J. et al. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis. 11, 152–162 (2005).

    CAS  PubMed  Google Scholar 

  96. Bicknell, I. R., Darrow, R., Barsalou, L., Fliesler, S. J. & Organisciak, D. T. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats. Mol. Vis. 8, 333–340 (2002).

    CAS  PubMed  Google Scholar 

  97. Maguire, A. M. et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374, 1597–1605 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fan, J., Rohrer, B., Frederick, J. M., Baehr, W. & Crouch, R. K. Rpe65−/− and Lrat−/− mice: comparable models of Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 49, 2384–2389 (2008).

    PubMed  Google Scholar 

  99. Veske, A., Nilsson, S. E., Narfström, K. & Gal, A. Retinal dystrophy of Swedish Briard/Briard-Beagle dogs is due to a 4-bp deletion in RPE65. Genomics 57, 57–61 (1999). This is a description of a key natural model for LCA, displaying a severe visual impairment and a conserved retinal morphology, studies in which led to a successful gene therapy clinical trial.

    CAS  PubMed  Google Scholar 

  100. Bainbridge, J. W. B. et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358, 2231–2239 (2008).

    CAS  PubMed  Google Scholar 

  101. Hauswirth, W. W. et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19, 979–990 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Groneberg, D. A., Bielory, L., Fischer, A., Bonini, S. & Wahn, U. Animal models of allergic and inflammatory conjunctivitis. Allergy 58, 1101–1113 (2003).

    CAS  PubMed  Google Scholar 

  103. Adamus, G., Schmied, J. L., Hargrave, P. A., Arendt, A. & Moticka, E. J. Induction of experimental autoimmune uveitis with rhodopsin synthetic peptides in Lewis rats. Curr. Eye Res. 11, 657–667 (1992).

    CAS  PubMed  Google Scholar 

  104. Liversidge, J., Thomson, A. W., Sewell, H. F. & Forrester, J. V. EAU in the guinea pig: inhibition of cell-mediated immunity and Ia antigen expression by cyclosporin A. Clin. Exp. Immunol. 69, 591–600 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Caspi, R. R. et al. Mouse models of experimental autoimmune uveitis. Ophthalmic. Res. 40, 169–174 (2008).

    CAS  PubMed  Google Scholar 

  106. Bodaghi, B. & Rao, N. Relevance of animal models to human uveitis. Ophthalmic. Res. 40, 200–202 (2008).

    PubMed  Google Scholar 

  107. Tang, J. et al. Autoimmune uveitis elicited with antigen-pulsed dendritic cells has a distinct clinical signature and is driven by unique effector mechanisms: initial encounter with autoantigen defines disease phenotype. J. Immunol. 178, 5578–5587 (2007).

    CAS  PubMed  Google Scholar 

  108. Martín, A. P. et al. Administration of a peptide inhibitor of α4-integrin inhibits the development of experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 46, 2056–2063 (2005).

    PubMed  Google Scholar 

  109. Shii, D. et al. Cyclosporin A eye drops inhibit fibrosis and inflammatory cell infiltration in murine type I allergic conjunctivitis without affecting the early-phase reaction. Curr. Eye Res. 34, 426–437 (2009).

    CAS  PubMed  Google Scholar 

  110. Amano, S., Rohan, R., Kuroki, M., Tolentino, M. & Adamis, A. P. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 39, 18–22 (1998).

    CAS  PubMed  Google Scholar 

  111. Ricci, B., Minicucci, G., Manfredi, A. & Santo, A. Oxygen-induced retinopathy in the newborn rat: effects of hyperbarism and topical administration of timolol maleate. Graefes Arch. Clin. Exp. Ophthalmol. 233, 226–230 (1995). This paper describes an isomorphic model that has underlined the role of an exogenous factor (low oxygen levels) for ROP.

    CAS  PubMed  Google Scholar 

  112. Barnett, J. M., Yanni, S. E. & Penn, J. S. The development of the rat model of retinopathy of prematurity. Doc. Ophthalmol. 120, 3–12 (2010).

    PubMed  Google Scholar 

  113. Hellstrom, A. et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc. Natl Acad. Sci. USA 98, 5804–5808 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kremer, I., Kissun, R., Nissenkorn, I., Ben-Sira, I. & Garner, A. Oxygen-induced retinopathy in newborn kittens. A model for ischemic vasoproliferative retinopathy. Invest. Ophthalmol. Vis. Sci. 28, 126–130 (1987).

    CAS  PubMed  Google Scholar 

  115. Sawada, A. & Neufeld, A. H. Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp. Eye Res. 69, 525–531 (1999).

    CAS  PubMed  Google Scholar 

  116. Hjelmeland, L. M. et al. An experimental model of ectropion uveae and iris neovascularization in the cat. Invest. Ophthalmol. Vis. Sci. 33, 1796–1803 (1992).

    CAS  PubMed  Google Scholar 

  117. Tolentino, M. J. et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103, 1820–1828 (1996).

    CAS  PubMed  Google Scholar 

  118. Hayreh, S. S. & Lata, G. F. Ocular neovascularization. Experimental animal model and studies on angiogenic factor(s). Int. Ophthalmol. 9, 109–120 (1986).

    CAS  PubMed  Google Scholar 

  119. Montezuma, S. R., Vavvas, D. & Miller, J. W. Review of the ocular angiogenesis animal models. Semin. Ophthalmol. 24, 52–61 (2009).

    PubMed  Google Scholar 

  120. Ludolph, A. C. et al. Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    PubMed  Google Scholar 

  121. Landis, S. C. et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490, 187–191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 1, 268–279 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wolf, D. A. et al. Direct gene transfer to the CNS prevents emergence of neurologic disease in a murine model of mucopolysaccharidosis type I. Neurobiol. Dis. 43, 123–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Grubb, J. H. et al. Chemically modified β-glucuronidase crosses blood–brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc. Natl Acad. Sci. USA 105, 2616–2621 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Glaros, E. N., Turner, C. T., Parkinson, E. J., Hopwood, J. J. & Brooks, D. A. Immune response to enzyme replacement therapy: single epitope control of antigen distribution from circulation. Mol. Genet. Metab. 77, 127–135 (2002).

    CAS  PubMed  Google Scholar 

  126. Descotes, J. Importance of immunotoxicity in safety assessment: a medical toxicologist's perspective. Toxicol. Lett. 149, 103–108 (2004).

    CAS  PubMed  Google Scholar 

  127. Haanstra, K. G. & Jonker, M. Non-human primate models in allo-transplantation research: a short review. Drug Discov. Today: Dis. Models 5, 73–79 (2008).

    Google Scholar 

  128. Johnson, P. D. & Besselsen, D. G. Practical aspects of experimental design in animal research. ILAR J. 43, 202–206 (2002).

    CAS  PubMed  Google Scholar 

  129. European Medicines Agency (EMA). Guideline on clinical trials in small populations. EMA website[online], (2007).

  130. European Medicines Agency (EMA). ICH guideline S6 (R1) — preclinical safety evaluation of biotechnology-derived pharmaceuticals. EMA website[online], (2011).

  131. Johansson, A., Nowak, G., Möller, C., Blomberg, P. & Harper, P. Adenoviral-mediated expression of porphobilinogen deaminase in liver restores the metabolic defect in a mouse model of acute intermittent porphyria. Mol. Ther. 10, 337–343 (2004).

    CAS  PubMed  Google Scholar 

  132. Geel, T. M., McLaughlin, P. M. J., De Leij, L. F. M. H., Ruiters, M. H. J. & Niezen-Koning, K. E. Pompe disease: current state of treatment modalities and animal models. Mol. Genet. Metab. 92, 299–307 (2007).

    CAS  PubMed  Google Scholar 

  133. Zoja, C., Morigi, M., Benigni, A. & Remuzzi, G. Genetics of rare diseases of the kidney: learning from mouse models. Cytogenet. Genome Res. 105, 479–484 (2004).

    CAS  PubMed  Google Scholar 

  134. Casal, M. & Haskins, M. Large animal models and gene therapy. Eur. J. Hum. Genet. 14, 266–272 (2006).

    CAS  PubMed  Google Scholar 

  135. Colella, P., Cotugno, G. & Auricchio, A. Ocular gene therapy: current progress and future prospects. Trends Mol. Med. 15, 23–31 (2009).

    CAS  PubMed  Google Scholar 

  136. Bennicelli, J. et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol. Ther. 16, 458–465 (2008).

    CAS  PubMed  Google Scholar 

  137. European Medicines Agency (EMA). Guideline on human cell-based medicinal products. EMA website[online], (2008).

  138. Adams, A. B., Pearson, T. C. & Larsen, C. P. Heterologous immunity: an overlooked barrier to tolerance. Immunol. Rev. 196, 147–160 (2003).

    CAS  PubMed  Google Scholar 

  139. Haanstra, K. G., Van der Maas, M. J., 't Hart, B. A. & Jonker, M. Characterization of naturally occurring CD4+CD25+ regulatory T cells in rhesus monkeys. Transplantation 85, 1185–1192 (2008).

    PubMed  Google Scholar 

  140. Pentchev, P. G. et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim. Biophys. Acta 619, 669–679 (1980).

    CAS  PubMed  Google Scholar 

  141. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994). This was the first description of the SOD1 mouse model for ALS.

    CAS  PubMed  Google Scholar 

  142. Fujita, K., Ando, M., Yamauchi, M., Nagata, Y. & Honda, M. Alteration of transglutaminase activity in rat and human spinal cord after neuronal degeneration. Neurochem. Res. 20, 1195–1201 (1995).

    CAS  PubMed  Google Scholar 

  143. Frugier, T. et al. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 9, 849–858 (2000).

    CAS  PubMed  Google Scholar 

  144. Hanin, I. The AF64A model of cholinergic hypofunction: an update. Life Sci. 58, 1955–1964 (1996).

    CAS  PubMed  Google Scholar 

  145. Lennon, V. A., Lindstrom, J. M. & Seybold, M. E. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J. Exp. Med. 141, 1365–1375 (1975).

    CAS  PubMed  Google Scholar 

  146. Kirshner, S. L., Katz-Levy, Y., Wirguin, I., Argov, Z. & Mozes, E. Fine specificity of T cell lines and clones that are capable of inducing autoimmune manifestations in mice. Cell. Immunol. 157, 11–28 (1994).

    CAS  PubMed  Google Scholar 

  147. Katz-Levy, Y. et al. A peptide composed of tandem analogs of two myasthenogenic T cell epitopes interferes with specific autoimmune responses. Proc. Natl Acad. Sci. USA 94, 3200–3205 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hack, A. A. et al. γ-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J. Cell Biol. 142, 1279–1287 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Caspi, R. R. Experimental autoimmune uveoretinitis in the rat and mouse. Curr. Protoc. Immunol. 1 May 2003 (doi:10.1002/0471142735.im1506s53).

  150. Rosenzweig, H. L. et al. NOD2, the gene responsible for familial granulomatous uveitis, in a mouse model of uveitis. Invest. Ophthalmol. Vis. Sci. 49, 1518–1524 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors specifically acknowledge the invaluable input of E. Héron (former member of the Committee for Orphan Medicinal Products (COMP), France), L. Håkansson (Medical Products Agency, Sweden) and J. P. Rocha (researcher at iMED.UL (Research Institute for Medicines and Pharmaceutical Sciences) and a professor at the University of Lisbon, Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sepodes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The views expressed in this article are the personal views of the authors and may not be understood or quoted as being made on behalf of or reflecting the position of the European Medicines Agency or one of its committees or working parties.

Related links

Related links

FURTHER INFORMATION

EURORDIS — Rare Diseases Europe

European Medicines Agency

European public assessment reports (European Medicines Agency)

Orphanet portal

Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaquer, G., Dannerstedt, F., Mavris, M. et al. Animal models for metabolic, neuromuscular and ophthalmological rare diseases. Nat Rev Drug Discov 12, 287–305 (2013). https://doi.org/10.1038/nrd3831

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3831

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research