Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation

Key Points

  • Paroxysmal atrial fibrillation (pAF) has discrete clinical features from persistent forms, including greater relative pathophysiological importance of the pulmonary vein sleeves and greater susceptibility to both medical and ablation therapy

  • Evidence indicates that both focal ectopic activity and re-entry can have a role in pAF, and that the pulmonary veins have structural and electrophysiological features that favour both mechanisms

  • The mechanisms underlying pAF are likely to vary between patients, depending on factors such as genetic background, cardiovascular risk factors, and concomitant heart disease

  • Ca2+-dependent triggered activity seems to underlie atrial ectopy in pAF, and has complex underlying molecular mechanisms that increase both cellular Ca2+ load and the leakiness of the sarcoplasmic reticulum Ca2+-release channel (ryanodine receptor)

  • Molecular mechanisms promoting re-entrant activity in patients with pAF include ionic properties (such as larger left atrial inward-rectifier background current) and structural properties (such as atrial fibrosis)

  • Fairly little attention has been paid in the literature to the specific mechanistic basis of pAF; more work is needed to provide insights with translational potential

Abstract

Atrial fibrillation (AF) is an extremely prevalent arrhythmia that presents a wide range of therapeutic challenges. AF usually begins in a self-terminating paroxysmal form (pAF). With time, the AF pattern often evolves to become persistent (nonterminating within 7 days). Important differences exist between pAF and persistent AF in terms of clinical features, in particular the responsiveness to antiarrhythmic drugs and ablation therapy. AF mechanisms have been extensively reviewed, but few or no Reviews focus specifically on the pathophysiology of pAF. Accordingly, in this Review, we examine the available data on the electrophysiological basis for pAF occurrence and maintenance, as well as the molecular mechanisms forming the underlying substrate. We first consider the mechanistic insights that have been obtained from clinical studies in the electrophysiology laboratory, noninvasive observations, and genetic studies. We then discuss the information about underlying molecular mechanisms that has been obtained from experimental studies on animal models and patient samples. Finally, we discuss the data available from animal models with spontaneous AF presentation, their relationship to clinical findings, and their relevance to understanding the mechanisms underlying pAF. Our analysis then turns to potential factors governing cases of progression from pAF to persistent AF and the clinical implications of the basic mechanisms we review. We conclude by identifying and discussing questions that we consider particularly important to address through future research in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General mechanistic concepts of atrial fibrillation.
Figure 2: Mechanisms of atrial fibrillation initiation at the pulmonary veins.
Figure 3: Molecular mechanisms of focal ectopic firing in paroxysmal atrial fibrillation (pAF).
Figure 4: Molecular mechanisms governing re-entry in paroxysmal atrial fibrillation (pAF).
Figure 5: Mechanisms of progression from paroxysmal atrial fibrillation (AF) to persistent forms.

Similar content being viewed by others

References

  1. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Heijman, J., Voigt, N. & Dobrev, D. New directions in antiarrhythmic drug therapy for atrial fibrillation. Future Cardiol. 9, 71–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Dobrev, D. & Nattel, S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375, 1212–1223 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Calkins, H. et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14, 528–606 (2012).

    Article  PubMed  Google Scholar 

  5. Wakili, R., Voigt, N., Kääb, S., Dobrev, D. & Nattel, S. Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955–2968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heijman, J., Voigt, N., Nattel, S. & Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114, 1483–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H. & Hindricks, G. Current controversies in determining the main mechanisms of atrial fibrillation. J. Intern. Med. 279, 428–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Nattel, S., Burstein, B. & Dobrev, D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62–73 (2008).

    Article  PubMed  Google Scholar 

  9. Nattel, S. et al. Early management of atrial fibrillation to prevent cardiovascular complications. Eur. Heart J. 35, 1448–1456 (2014).

    Article  PubMed  Google Scholar 

  10. Lim, H. S. et al. Persistent atrial fibrillation from the onset: a specific subgroup of patients with biatrial substrate involvement and poorer clinical outcome. JACC Clin. Electrophysiol. 2, 129–139 (2016).

    Article  PubMed  Google Scholar 

  11. Oral, H. et al. Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105, 1077–1081 (2002).

    Article  PubMed  Google Scholar 

  12. Eijsbouts, S. et al. Serial cardioversion by class IC Drugs during 4 months of persistent atrial fibrillation in the goat. J. Cardiovasc. Electrophysiol. 17, 648–654 (2006).

    Article  PubMed  Google Scholar 

  13. Haissaguerre, M. et al. Driver domains in persistent atrial fibrillation. Circulation 130, 530–538 (2014).

    Article  PubMed  Google Scholar 

  14. Jaïs, P. et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95, 572–576 (1997).

    Article  PubMed  Google Scholar 

  15. Haïssaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    Article  PubMed  Google Scholar 

  16. Jaïs, P. et al. Ablation therapy for atrial fibrillation (AF): past, present and future. Cardiovasc. Res. 54, 337–346 (2002).

    Article  PubMed  Google Scholar 

  17. Macle, L. et al. Adenosine-guided pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation: an international, multicentre, randomised superiority trial. Lancet 386, 672–679 (2015).

    Article  PubMed  Google Scholar 

  18. Drewitz, I. et al. Persistent, isolated pulmonary vein re-entry: inducibility, entrainment, and overdrive termination of a sustained tachycardia within an isolated pulmonary vein. Europace 10, 261–264 (2008).

    Article  PubMed  Google Scholar 

  19. Atienza, F. et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114, 2434–2442 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Nattel, S. Adenosine and atrial arrhythmias: exploring electrophysiological mechanisms in vivo. Pacing Clin. Electrophysiol. 35, 553–555 (2012).

    Article  PubMed  Google Scholar 

  21. Teh, A. W. et al. Electroanatomic properties of the pulmonary veins: slowed conduction, low voltage and altered refractoriness in AF patients. J. Cardiovasc. Electrophysiol. 22, 1083–1091 (2011).

    Article  PubMed  Google Scholar 

  22. Teh, A. W. et al. Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. J. Cardiovasc. Electrophysiol. 23, 232–238 (2012).

    Article  PubMed  Google Scholar 

  23. Stiles, M. K. et al. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the 'second factor'. J. Am. Coll. Cardiol. 53, 1182–1191 (2009).

    Article  PubMed  Google Scholar 

  24. Cozma, D. et al. Mechanism of atrial fibrillation: decremental conduction, fragmentation, and ectopic activity in patients with drug resistance paroxysmal atrial fibrillation and structurally normal heart. Pacing Clin. Electrophysiol. 28, S115–S119 (2005).

    Article  PubMed  Google Scholar 

  25. Yamabe, H., Kanazawa, H., Itoh, M., Kaneko, S. & Ogawa, H. Difference in the maintenance mechanism of atrial fibrillation perpetuated after pulmonary vein isolation between paroxysmal and persistent atrial fibrillation: effects of subsequent stepwise ablation. Int. J. Cardiol. 210, 109–118 (2016).

    Article  PubMed  Google Scholar 

  26. Vincenti, A., Brambilla, R., Fumagalli, M. G., Merola, R. & Pedretti, S. Onset mechanism of paroxysmal atrial fibrillation detected by ambulatory Holter monitoring. Europace 8, 204–210 (2006).

    Article  PubMed  Google Scholar 

  27. Bettoni, M. & Zimmermann, M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105, 2753–2759 (2002).

    Article  PubMed  Google Scholar 

  28. Rosso, R. et al. Vagal paroxysmal atrial fibrillation: prevalence and ablation outcome in patients without structural heart disease. J. Cardiovasc. Electrophysiol. 21, 489–493 (2010).

    Article  PubMed  Google Scholar 

  29. Waktare, J. E. et al. The role of atrial ectopics in initiating paroxysmal atrial fibrillation. Eur. Heart J. 22, 333–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hattori, T. et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc. Res. 93, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Olesen, M. S. et al. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Med. Genet. 13, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deo, M. et al. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc. Natl Acad. Sci. USA 110, 4291–4296 (2013).

    Article  PubMed  Google Scholar 

  33. Hong, K., Bjerregaard, P., Gussak, I. & Brugada, R. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J. Cardiovasc. Electrophysiol. 16, 394–396 (2005).

    Article  PubMed  Google Scholar 

  34. Zhang, X. et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kazemian, P., Gollob, M. H., Pantano, A. & Oudit, G. Y. A novel mutation in the RYR2 gene leading to catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation: dose-dependent arrhythmia-event suppression by β-blocker therapy. Can. J. Cardiol. 27, 870.e7–10 (2011).

    Article  CAS  Google Scholar 

  36. Beavers, D. L. et al. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J. Am. Coll. Cardiol. 62, 2010–2019 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Chiang, D. Y. et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ. Arrhythm. Electrophysiol. 7, 1214–1222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellinor, P. T., Petrov-Kondratov, V. I., Zakharova, E., Nam, E. G. & MacRae, C. A. Potassium channel gene mutations rarely cause atrial fibrillation. BMC Med. Genet. 7, 70 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nattel, S. Paroxysmal atrial fibrillation and pulmonary veins: relationships between clinical forms and automatic versus re-entrant mechanisms. Can. J. Cardiol. 29, 1147–1149 (2013).

    Article  PubMed  Google Scholar 

  40. Lindberg, S., Hansen, S. & Nielsen, T. Spontaneous conversion of first onset atrial fibrillation. Intern. Med. J. 42, 1195–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Verheule, S. et al. Tissue structure and connexin expression of canine pulmonary veins. Cardiovasc. Res. 55, 727–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, E. I. et al. Modulation of pacemaker activity of sinoatrial node cells by electrical load imposed by an atrial cell model. Am. J. Physiol. 269, H1735–H1742 (1995).

    CAS  PubMed  Google Scholar 

  43. Ehrlich, J. R. et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J. Physiol. 551, 801–813 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hocini, M. et al. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105, 2442–2448 (2002).

    Article  PubMed  Google Scholar 

  45. Ozgen, N. et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc. Res. 75, 758–769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qi, X.-Y. et al. Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation 129, 430–440 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Pandit, S. V. et al. Ionic determinants of functional reentry in a 2D model of human atrial cells during simulated chronic atrial fibrillation. Biophys. J. 88, 3806–3821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voigt, N. et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129, 145–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, F. et al. Calreticulin overexpression correlates with integrin-α5 and transforming growth factor-β1 expression in the atria of patients with rheumatic valvular disease and atrial fibrillation. Int. J. Cardiol. 168, 2177–2185 (2013).

    Article  PubMed  Google Scholar 

  50. Voigt, N. et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125, 2059–2070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chiang, D. Y. et al. Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients. J. Am. Coll. Cardiol. 65, 163–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brundel, B. J. et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc. Res. 42, 443–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Smith, S. A. et al. Dysfunction in the βII spectrin-dependent cytoskeleton underlies human arrhythmia. Circulation 131, 695–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith, S. et al. Dysfunction of the βII spectrin-based pathway in human heart failure. Am. J. Physiol. Heart Circ. Physiol. 310, H1583–H1591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cunha, S. R. et al. Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation 124, 1212–1222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt, C. et al. Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132, 82–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Ford, J. et al. The positive frequency-dependent electrophysiological effects of the IKur inhibitor XEN-D0103 are desirable for the treatment of atrial fibrillation. Heart Rhythm 13, 555–564 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Voigt, N. et al. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 472–480 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Glasscock, E. et al. Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation. Bas. Res. Cardiol. 110, 505 (2015).

    Article  CAS  Google Scholar 

  60. Zhou, X. et al. Increased trafficking of Ca2+-activated K+ channels to plasma membrane modulates action potential duration in human paroxysmal atrial fibrillation. Eur. Heart J. 35 (Suppl. 1), 183 [abstract 1041] (2014).

    Google Scholar 

  61. Brundel, B. J. et al. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J. Am. Coll. Cardiol. 37, 926–932 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Brundel, B. J. et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103, 684–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Voigt, N. et al. Impaired Na+-dependent regulation of acetylcholine-activated inward-rectifier K+ current modulates action potential rate dependence in patients with chronic atrial fibrillation. J. Mol. Cell. Cardiol. 61, 142–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Chiang, D. Y. et al. Identification of microRNA-mRNA dysregulations in paroxysmal atrial fibrillation. Int. J. Cardiol. 184, 190–197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Harada, M. et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: potential role in metabolic adaptation and prevention of progression. J. Am. Coll. Cardiol. 66, 47–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Li, N. et al. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation 129, 1276–1285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gemel, J. et al. Connexin40 abnormalities and atrial fibrillation in the human heart. J. Mol. Cell. Cardiol. 76, 159–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Brundel, B. J. J. M. et al. Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc. Res. 54, 380–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ke, L. et al. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J. Mol. Cell. Cardiol. 45, 685–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, D. et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 129, 346–358 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Carnes, C. A. et al. Atrial glutathione content, calcium current, and contractility. J. Biol. Chem. 282, 28063–28073 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Brundel, B. J. J. M. et al. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J. Mol. Cell. Cardiol. 41, 555–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Goette, A. et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101, 2678–2681 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Xiao, H., Lei, H., Qin, S., Ma, K. & Wang, X. TGF-β1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin. Cardiol. 33, 149–156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brundel, B. J. et al. Endothelin system in human persistent and paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 12, 737–742 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Goette, A. et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 35, 1669–1677 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Nakano, Y. et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J. Am. Coll. Cardiol. 43, 818–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Cao, H. et al. Natriuretic peptides and right atrial fibrosis in patients with paroxysmal versus persistent atrial fibrillation. Peptides 31, 1531–1539 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Platonov, P. G., Mitrofanova, L. B., Orshanskaya, V. & Ho, S. Y. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. Coll. Cardiol. 58, 2225–2232 (2011).

    Article  PubMed  Google Scholar 

  80. Haemers, P. et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv625 (2015).

  81. Nishida, K., Michael, G., Dobrev, D. & Nattel, S. Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace 12, 160–172 (2010).

    Article  PubMed  Google Scholar 

  82. Riley, G., Syeda, F., Kirchhof, P. & Fabritz, L. An introduction to murine models of atrial fibrillation. Front. Physiol. 3, 296 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. Nattel, S., Shiroshita-Takeshita, A., Brundel, B. J. J. M. & Rivard, L. Mechanisms of atrial fibrillation: lessons from animal models. Prog. Cardiovasc. Dis. 48, 9–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Finet, J. E., Rosenbaum, D. S. & Donahue, J. K. Information learned from animal models of atrial fibrillation. Cardiol. Clin. 27, 45–54 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Martins, R. P. et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation 129, 1472–1482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Müller, F. U. et al. Heart-directed expression of a human cardiac isoform of cAMP-response element modulator in transgenic mice. J. Biol. Chem. 280, 6906–6914 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kirchhof, P. et al. Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice. Int. J. Cardiol. 166, 366–374 (2013).

    Article  PubMed  Google Scholar 

  88. Glukhov, A. V. et al. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur. Heart J. 36, 686–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Levin, M. D. et al. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J. Clin. Invest. 119, 3420–3436 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wan, E. et al. Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice. J. Clin. Invest. 126, 112–122 (2016).

    Article  PubMed  Google Scholar 

  91. Temple, J. et al. Atrial fibrillation in KCNE1-null mice. Circ. Res. 97, 62–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Li, J., McLerie, M. & Lopatin, A. N. Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. Am. J. Physiol. Heart Circ. Physiol. 287, H2790–2802 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Hirose, M. et al. Diacylglycerol kinase ζ inhibits Gαq-induced atrial remodeling in transgenic mice. Heart Rhythm 6, 78–84 (2009).

    Article  PubMed  Google Scholar 

  94. Hong, C.-S. et al. Overexpression of junctate induces cardiac hypertrophy and arrhythmia via altered calcium handling. J. Mol. Cell. Cardiol. 44, 672–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Hong, C.-S. et al. Cardiac remodeling and atrial fibrillation in transgenic mice overexpressing junctin. FASEB J. 16, 1310–1312 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Choi, E.-K. et al. Triggered firing and atrial fibrillation in transgenic mice with selective atrial fibrosis induced by overexpression of TGF-β1. Circ. J. 76, 1354–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ozcan, C., Battaglia, E., Young, R. & Suzuki, G. LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J. Am. Heart Assoc. 4, e001733 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Xiao, H. D. et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 165, 1019–1032 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arad, M. et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107, 2850–2856 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Watanabe, H. et al. Striking in vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro. Circulation 124, 1001–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pretorius, L. et al. Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am. J. Pathol. 175, 998–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, H.-H. et al. Transcription enhancer factor-1-related factor-transgenic mice develop cardiac conduction defects associated with altered connexin phosphorylation. Circulation 110, 2980–2987 (2004).

    Article  PubMed  Google Scholar 

  103. Sawaya, S. E. et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. Am. J. Physiol. Heart Circ. Physiol. 292, H1561–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Adam, O. et al. Role of Rac1 GTPase activation in atrial fibrillation. J. Am. Coll. Cardiol. 50, 359–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Scridon, A. et al. Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system. Am. J. Physiol. Heart Circ. Physiol. 303, H386–H392 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Scridon, A. et al. Long-standing arterial hypertension is associated with Pitx2 down-regulation in a rat model of spontaneous atrial tachyarrhythmias. Europace 17, 160–165 (2015).

    Article  PubMed  Google Scholar 

  107. Nishida, K. et al. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 123, 137–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Yeh, Y.-H. et al. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ. Arrhythm. Electrophysiol. 1, 93–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Burstein, B. et al. Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ. Res. 105, 1213–1222 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Wakili, R. et al. Temporal evolution of atrial remodeling and atrial arrhythmogenesis during tachycardiomyopathic heart failure development. Circulation 122, A17762 (2010).

    Google Scholar 

  111. Tan, A. Y. et al. Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 118, 916–925 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Choi, E.-K. et al. Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation 121, 2615–2623 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sharifov, O. F. et al. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J. Am. Coll. Cardiol. 43, 483–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Carneiro, J. S. et al. The selective cardiac late sodium current inhibitor GS-458967 suppresses autonomically triggered atrial fibrillation in an intact porcine model. J. Cardiovasc. Electrophysiol. 26, 1364–1369 (2015).

    Article  PubMed  Google Scholar 

  115. Zicha, S., Fernández-Velasco, M., Lonardo, G., L'Heureux, N. & Nattel, S. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc. Res. 66, 472–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Qi, X.-Y. et al. Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. Circ. Res. 116, 836–845 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Aguilar, M., Qi, X. Y., Huang, H., Comtois, P. & Nattel, S. Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation. Biophys. J. 107, 2444–2455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Harada, M. et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126, 2051–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jost, N. et al. Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. J. Physiol. 591, 4189–4206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Vos, C. B. et al. Progression of atrial fibrillation in the REgistry on Cardiac rhythm disORDers assessing the control of Atrial Fibrillation cohort: clinical correlates and the effect of rhythm-control therapy. Am. Heart J. 163, 887–893 (2012).

    Article  PubMed  Google Scholar 

  121. de Vos, C. B. et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J. Am. Coll. Cardiol. 55, 725–731 (2010).

    Article  PubMed  Google Scholar 

  122. Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Yue, L. et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res. 81, 512–525 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Qi, X. Y. et al. Cellular signaling underlying atrial tachycardia remodeling of L-type calcium current. Circ. Res. 103, 845–854 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Luo, X. et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123, 1939–1951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Harada, M. et al. MicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circ. Res. 114, 689–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Ausma, J. et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96, 3157–3163 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Kirubakaran, S. et al. Fractionation of electrograms is caused by colocalized conduction block and connexin disorganization in the absence of fibrosis as AF becomes persistent in the goat model. Heart Rhythm 12, 397–408 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Verheule, S. et al. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ. Arrhythm. Electrophysiol. 6, 202–211 (2013).

    Article  PubMed  Google Scholar 

  130. Burstein, B., Qi, X.-Y., Yeh, Y.-H., Calderone, A. & Nattel, S. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc. Res. 76, 442–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Garratt, C. J. et al. Repetitive electrical remodeling by paroxysms of atrial fibrillation in the goat: no cumulative effect on inducibility or stability of atrial fibrillation. J. Cardiovasc. Electrophysiol. 10, 1101–1108 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Todd, D. M. et al. Repetitive 4-week periods of atrial electrical remodeling promote stability of atrial fibrillation: time course of a second factor involved in the self-perpetuation of atrial fibrillation. Circulation 109, 1434–1439 (2004).

    Article  PubMed  Google Scholar 

  133. Wu, C.-T. et al. Repeated paroxysmal atrial fibrillation episodes remodel ionic currents and promote atrial fibrillation in dogs. Circulation 128, [abstract 13765] (2013).

  134. Kirchhof, P. et al. Personalized management of atrial fibrillation: proceedings from the fourth Atrial Fibrillation competence NETwork/European Heart Rhythm Association consensus conference. Europace 15, 1540–1556 (2013).

    Article  PubMed  Google Scholar 

  135. Donahue, J. K. Biological therapies for atrial fibrillation: ready for prime time? J. Cardiovasc. Pharmacol. 67, 19–25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nishida, K., Datino, T., Macle, L. & Nattel, S. Atrial fibrillation ablation: translating basic mechanistic insights to the patient. J. Am. Coll. Cardiol. 64, 823–831 (2014).

    Article  PubMed  Google Scholar 

  137. Datino, T. et al. Mechanisms by which adenosine restores conduction in dormant canine pulmonary veins. Circulation 121, 963–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, P.-S., Chen, L. S., Fishbein, M. C., Lin, S.-F. & Nattel, S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114, 1500–1515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Podd, S. J., Freemantle, N., Furniss, S. S. & Sulke, N. First clinical trial of specific IKACh blocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Europace 18, 340–346 (2016).

    Article  PubMed  Google Scholar 

  140. Heijman, J. et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 109, 467–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Pathak, R. K., Mahajan, R., Lau, D. H. & Sanders, P. The implications of obesity for cardiac arrhythmia mechanisms and management. Can. J. Cardiol. 31, 203–210 (2015).

    Article  PubMed  Google Scholar 

  142. Gal, P. & Marrouche, N. F. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv514 (2015).

  143. Rudy, Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ. Res. 112, 863–874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Watson, T., Shantsila, E. & Lip, G. Y. H. Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited. Lancet 373, 155–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Mancarella, S. et al. Impaired Ca2+ homeostasis is associated with atrial fibrillation in the α1D L-type Ca2+ channel KO mouse. Am. J. Physiol. Heart Circ. Physiol. 295, H2017–H2024 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by grants from the Canadian Institutes of Health Research (S.N.), Quebec Heart and Stroke Foundation (S.N.), the European-North American Atrial Fibrillation Research Alliance (07CVD03) grant from Fondation Leducq (S.N., D.D.), the European Network for Translational Research in Atrial Fibrillation (EUTRAF, No. 261057; D.D.), the DZHK (German Center for Cardiovascular Research; D.D.), and the National Heart, Lung, and Blood Institute of the National Institutes of Health (NIH RO1HL131517; D.D.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

D.D. declares that he has received consultancy fees and research grants from OMEICOS Therapeutics GmbH and Xention. S.N. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nattel, S., Dobrev, D. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat Rev Cardiol 13, 575–590 (2016). https://doi.org/10.1038/nrcardio.2016.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing