Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of atrial fibrillation in bradyarrhythmias

Key Points

  • Sinus node disease (SND), a common indication to implant a pacemaker, is associated with atrial tachyarrhythmias, specifically atrial fibrillation (AF), present either at implantation or detected subsequently

  • Device-detected atrial tachyarrhythmias, even if short (5–6 min) and asymptomatic, are associated with an increased risk of stroke

  • The choice of pacing modality is clinically important, because physiological pacing (for example, maintaining atrio–ventricular synchrony) is superior to single-chamber ventricular pacing for prevention of AF in SND

  • Atrial tachyarrhythmias and evolution of AF towards persistent or permanent AF can be reduced by implanting DDDR pacemakers with algorithms to address antitachycardia pacing and minimize unnecessary right ventricular pacing

Abstract

Sinus node disease (SND), a common indication to implant a pacemaker, is frequently associated with atrial fibrillation (AF), either at implantation (paroxysmal AF) or during follow-up, which often evolves to persistent or permanent AF. Pacemakers with an atrial lead allow continuous monitoring of the atrial rhythm and enable detection of the burden of AF. Asymptomatic atrial tachyarrhythmias, being associated with increased risk of stroke, have important prognostic implications, and their detection could guide decision-making about antithrombotic prophylaxis. Pacing mode and pacing algorithms can influence the occurrence of AF and atrial tachyarrhythmias. In DDD/DDDR pacing mode, reduction of unnecessary right ventricular pacing positively affects the occurrence and evolution of AF, but patients with a history of atrial tachyarrhythmias maintain an increased risk of arrhythmic events. In the MINERVA study, the use of algorithms that act in the atrium for preventive pacing and atrial antitachycardia pacing while minimizing right ventricular pacing was beneficial in patients with SND and previous atrial tachyarrhythmias, and was associated with a significant reduction in evolution to permanent AF. New information available on therapies delivered at the atrial level by implanted devices suggests clinical advantages that could improve current guidelines for the management of AF and atrial tachyarrhythmias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-chamber (DDD) pacemaker, with one bipolar lead in the right atrial appendage (1) and one bipolar lead at the apex of the right ventricle (2).
Figure 2: Remote transmission of diagnostic data from an implanted device.
Figure 3: Results of the MINERVA trial.69
Figure 4: Effective interruption of an atrial tachyarrhythmia in a patient with a Medtronic DDDR pacemaker implanted for sinus node disease.

Similar content being viewed by others

References

  1. Patel, N. J. et al. Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: implications for healthcare planning. Circulation 129, 2371–2379 (2014).

    Article  PubMed  Google Scholar 

  2. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  3. Boriani, G., Diemberger, I., Martignani, C., Biffi, M. & Branzi, A. The epidemiological burden of atrial fibrillation: a challenge for clinicians and health care systems. Eur. Heart J. 27, 893–894 (2006).

    Article  PubMed  Google Scholar 

  4. Boriani, G. & Diemberger, I. Globalization of the epidemiologic, clinical, and financial burden of atrial fibrillation. Chest 142, 1368–1370 (2012).

    Article  PubMed  Google Scholar 

  5. Miyasaka, Y. et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 114, 119–125 (2006).

    Article  PubMed  Google Scholar 

  6. Stefansdottir, H., Aspelund, T., Gudnason, V. & Arnar, D. O. Trends in the incidence and prevalence of atrial fibrillation in Iceland and future projections. Europace 13, 1110–1117 (2011).

    Article  PubMed  Google Scholar 

  7. Akoum, N. et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J. Cardiovasc. Electrophysiol. 23, 44–50 (2012).

    Article  PubMed  Google Scholar 

  8. Morris, G. M. & Kalman, J. M. Fibrosis, electrics and genetics. Perspectives in sinoatrial node disease. Circ. J. 78, 1272–1282 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Thackray, S. D. et al. The prevalence of heart failure and asymptomatic left ventricular systolic dysfunction in a typical regional pacemaker population. Eur. Heart J. 24, 1143–1152 (2003).

    Article  PubMed  Google Scholar 

  10. Healey, J. S. et al. Pacemaker-detected atrial fibrillation in patients with pacemakers: prevalence, predictors, and current use of oral anticoagulation. Can. J. Cardiol. 29, 224–228 (2013).

    Article  PubMed  Google Scholar 

  11. Brunner, M., Olschewski, M., Geibel, A., Bode, C. & Zehender, M. Long-term survival after pacemaker implantation. Prognostic importance of gender and baseline patient characteristics. Eur. Heart J. 25, 88–95 (2004).

    Article  PubMed  Google Scholar 

  12. Healey, J. S. et al. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Boriani, G. et al. AF burden is important—fact or fiction? Int. J. Clin. Pract. 68, 444–452 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Jensen, P. N. et al. Incidence of and risk factors for sick sinus syndrome in the general population. J. Am. Coll. Cardiol. 64, 531–538 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sutton, R & Kenny, R. A. The natural history of sick sinus syndrome. Pacing Clin. Electrophysiol. 9, 1110–1114 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Andersen, H. R. et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome. Lancet 350, 1210–1216 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lamas, G. A. et al. Quality of life and clinical outcomes in elderly patients treated with ventricular pacing as compared with dual chamber pacing. N. Engl. J. Med. 338, 1097–1104 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Connolly, S. J. et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. N. Engl. J. Med. 342, 1385–1391 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lamas, G. A. et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N. Engl. J. Med. 346, 1854–1862 (2002).

    Article  PubMed  Google Scholar 

  20. Toff, W. D., Camm, A. J. & Skehan, J. D. Single-chamber versus dual-chamber pacing for high-grade atrioventricular block. N. Engl. J. Med. 353, 145–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Healey, J. S. et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 114, 11–17 (2006).

    Article  PubMed  Google Scholar 

  22. Capucci, A. et al. Evaluation by cardiopulmonary exercise test of DDDR versus DDD pacing. Pacing Clin. Electrophysiol. 15, 1908–1913 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann, E. et al. New insights into the initiation of atrial fibrillation: a detailed intraindividual and interindividual analysis of the spontaneous onset of atrial fibrillation using new diagnostic pacemaker features. Circulation 113, 1933–1941 (2006).

    Article  PubMed  Google Scholar 

  24. Purerfellner, H., Gillis, A. M., Holbrook, R. & Hettrick, D. A. Accuracy of atrial tachyarrhythmia detection in implantable devices with arrhythmia therapies. Pacing Clin. Electrophysiol. 27, 983–992 (2004).

    Article  PubMed  Google Scholar 

  25. Passman, R. S. et al. Accuracy of mode switch algorithms for detection of atrial tachyarrhythmias. J. Cardiovasc. Electrophysiol. 15, 773–777 (2004).

    Article  PubMed  Google Scholar 

  26. Khoo, C. W., Krishnamoorthy, S., Lim, H. S. & Lip, G. Y. Atrial fibrillation, arrhythmia burden and thrombogenesis. Int. J. Cardiol. 157, 318–323 (2012).

    Article  PubMed  Google Scholar 

  27. Pollak, W. M. et al. Clinical utility of intraatrial pacemaker stored electrograms to diagnose atrial fibrillation and flutter. Pacing Clin. Electrophysiol. 24, 424–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kaufman, E. S. et al. Positive predictive value of device-detected atrial high-rate episodes at different rates and durations: an analysis from ASSERT. Heart Rhythm 9, 1241–1246 (2012).

    Article  PubMed  Google Scholar 

  29. Israel, C. W. et al. Pace-termination and pacing for prevention of atrial tachyarrhythmias: results from a multicenter study with an implantable device for atrial therapy. J. Cardiovasc. Electrophysiol. 12, 1121–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Boriani, G. et al. Asymptomatic lone atrial fibrillation—how can we detect the arrhythmia? Curr. Pharm. Des. 21, 659–666 (2014).

    Article  CAS  Google Scholar 

  31. Kirchhof, P. et al. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options—a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference. Europace 14, 8–27 (2012).

    Article  PubMed  Google Scholar 

  32. Camm, A. J., Corbucci, G. & Padeletti, L. Usefulness of continuous electrocardiographic monitoring for atrial fibrillation. Am. J. Cardiol. 110, 270–276 (2012).

    Article  PubMed  Google Scholar 

  33. Lamas, G. How much atrial fibrillation is too much atrial fibrillation? N. Engl. J. Med. 366, 178–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Glotzer, T. V. et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the atrial diagnostics ancillary study of the MOde Selection Trial (MOST). Circulation 107, 1614–1619 (2003).

    Article  PubMed  Google Scholar 

  35. Capucci, A. et al. Monitored atrial fibrillation duration predicts arterial embolic events in patients suffering from bradycardia and atrial fibrillation implanted with antitachycardia pacemakers. J. Am. Coll. Cardiol. 46, 1913–1920 (2005).

    Article  PubMed  Google Scholar 

  36. Glotzer, T. V. et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ. Arrhythm. Electrophysiol. 2, 474–480 (2009).

    Article  PubMed  Google Scholar 

  37. Shanmugam, N. et al. Detection of atrial high-rate events by continuous home monitoring: clinical significance in the heart failure–cardiac resynchronization therapy population. Europace 14, 230–237 (2012).

    Article  PubMed  Google Scholar 

  38. Boriani, G. et al. Device detected atrial fibrillation and risk for stroke: an analysis of more than 10,000 patients from the SOS AF project (Stroke Prevention Strategies based on Atrial Fibrillation information from implanted devices). Eur. Heart J. 35, 508–516 (2014).

    Article  PubMed  Google Scholar 

  39. Camm, A. J. et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 31, 2369–2429 (2010).

    Article  PubMed  Google Scholar 

  40. Lip, G. Y. Stroke and bleeding risk assessment in atrial fibrillation: when, how, and why? Eur. Heart J. 34, 1041–1049 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Boriani, G., Diemberger, I., Biffi, M. & Martignani, C. Balancing the risk of hemorrhage vs thromboembolism in patients with atrial fibrillation: how to navigate between Scylla and Charybdis? Chest 138, 1032–1033 (2010).

    Article  PubMed  Google Scholar 

  42. Botto, G. L. et al. Presence and duration of atrial fibrillation detected by continuous monitoring: crucial implications for the risk of thromboembolic events. J. Cardiovasc. Electrophysiol. 20, 241–248 (2009).

    Article  PubMed  Google Scholar 

  43. Boriani, G. et al. Improving stroke risk stratification using the CHADS2 and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous arrhythmia burden monitoring. Stroke 42, 1768–1770 (2011).

    Article  PubMed  Google Scholar 

  44. Boriani, G. et al. Improving thromboprophylaxis using atrial fibrillation diagnostic capabilities in implantable cardioverter-defibrillators: the multicentre Italian ANGELS of AF project. Circ. Cardiovasc. Qual. Outcomes 5, 182–188 (2012).

    Article  PubMed  Google Scholar 

  45. US National Institutes of Health. ClinicalTrials.gov[online], (2014).

  46. Lip, G. Y. et al. 'Real-world' antithrombotic treatment in atrial fibrillation: the EORP-AF pilot survey. Am. J. Med. 127, 519–529 (2014).

    Article  PubMed  Google Scholar 

  47. Lip, G. Y. et al. Regional differences in presentation and treatment of patients with atrial fibrillation in Europe: a report from the EURObservational Research Programme Atrial Fibrillation (EORP-AF) Pilot General Registry. Europace 17, 194–206 (2015).

    Article  PubMed  Google Scholar 

  48. Ohlmeier, C., Mikolajczyk, R., Haverkamp, W. & Garbe, E. Incidence, prevalence, and antithrombotic management of atrial fibrillation in elderly Germans. Europace 15, 1436–1444 (2013).

    Article  PubMed  Google Scholar 

  49. Boriani, G. et al. Telecardiology and remote monitoring of implanted electrical devices: the potential for fresh clinical care perspectives. J. Gen. Intern. Med. 23 (Suppl. 1), 73–77 (2008).

    Article  PubMed  Google Scholar 

  50. Boriani, G. et al. The MOnitoring Resynchronization dEvices and CARdiac patients (MORE-CARE) randomized controlled trial: phase 1 results on dynamics of early intervention with remote monitoring. J. Med. Internet Res. 15, e167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Varma, N. & Ricci, R. P. Telemedicine and cardiac implants: what is the benefit? Eur. Heart J. 34, 1885–1895 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zanaboni, P. et al. Cost-utility analysis of the EVOLVO study on remote monitoring for heart failure patients with implantable defibrillators: randomized controlled trial. J. Med. Internet Res. 15, e106 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boriani, G. et al. Health technology assessment in interventional electrophysiology and device therapy: a position paper of the European Heart Rhythm Association. Eur. Heart J. 34, 1869–1874 (2013).

    Article  PubMed  Google Scholar 

  54. Boriani, G. et al. Device therapy and hospital reimbursement practices across European countries: a heterogeneous scenario. Europace 13 (Suppl. 2), ii59–ii65 (2011).

    Article  PubMed  Google Scholar 

  55. Ricci, R. P., Morichelli, L., Gargaro, A., Laudadio, M. T. & Santini, M. Home monitoring in patients with implantable cardiac devices: is there a potential reduction of stroke risk? Results from a computer model tested through Montecarlo simulations. J. Cardiovasc. Electrophysiol. 20, 1244–1251 (2009).

    Article  PubMed  Google Scholar 

  56. Boriani, G., Diemberger, I., Mantovani, V., Biffi, M. & Martignani, C. Remote monitoring of patients with an implanted device and patients' outcomes: the potential for “win-win” dynamics. J. Cardiovasc. Electrophysiol. 20, 1252–1254 (2009).

    Article  PubMed  Google Scholar 

  57. Martin, D. T. Randomized trial of anticoagulation guided by remote rhythm monitoring in patients with implanted cardioverter-defibrillator and resynchronization devices [abstract]. Presented at the ACC Scientific Session 2014.

  58. Sweeney, M. O., Prinzen, F. W. Ventricular pump function and pacing: physiological and clinical integration. Circ. Arrhythm. Electrophysiol. 1, 127–139 (2008).

    Article  PubMed  Google Scholar 

  59. Lim, H. S. The prescription of minimal ventricular pacing. Pacing Clin. Electrophysiol. 35, 1528–1536 (2012).

    Article  PubMed  Google Scholar 

  60. Sweeney, M. O. et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107, 2932–2937 (2003).

    Article  PubMed  Google Scholar 

  61. Kristensen, L. et al. Incidence of atrial fibrillation and thromboembolism in a randomised trial of atrial versus dual chamber pacing in 177 patients with sick sinus syndrome. Heart 90, 661–666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen, J. C. et al. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. Eur. Heart J. 32, 686–696 (2011).

    Article  PubMed  Google Scholar 

  63. Padeletti, L., Pontecorboli, G., Michelucci, A., Mond, H. G. AAIR or DDDR pacing for sick sinus syndrome: the physiologic conundrum. Europace 14, 781–782 (2012).

    Article  PubMed  Google Scholar 

  64. Simantirakis, E. N., Arkolaki E. G. & Vardas, P. E. Novel pacing algorithms: do they represent a beneficial proposition for patients, physicians, and the health care system? Europace 11, 1272–1280 (2009).

    Article  PubMed  Google Scholar 

  65. Gillis, A. M. et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. Pacing Clin. Electrophysiol. 29, 697–705 (2006).

    Article  PubMed  Google Scholar 

  66. Pürerfellner, H. et al. Comparison of two strategies to reduce ventricular pacing in pacemaker patients. Pacing Clin. Electrophysiol. 31, 167–176 (2008).

    Article  PubMed  Google Scholar 

  67. Sweeney, M. O. et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N. Engl. J. Med. 357, 1000–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Botto, G. L. et al. Managed ventricular pacing compared with conventional dual-chamber pacing for elective replacement in chronically paced patients: results of the Prefer for Elective Replacement Managed Ventricular Pacing randomized study. Heart Rhythm 11, 992–1000 (2014).

    Article  PubMed  Google Scholar 

  69. Boriani, G. et al. Atrial antitachycardia pacing and managed ventricular pacing in bradycardia patients with paroxysmal or persistent atrial tachyarrhythmias: the MINERVA randomized multicentre international trial. Eur. Heart J. 35, 2352–2362 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stockburger, M. et al. Long-term clinical effects of ventricular pacing reduction with a changeover mode to minimize ventricular pacing in a general pacemaker population. Eur. Heart J. 36, 151–157 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bellocci, F. et al. Antiarrhythmic benefits of dual chamber stimulation with rate-response in patients with paroxysmal atrial fibrillation and chronotropic incompetence: a prospective, multicentre study. Europace 1, 220–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Mond, H. G. & Barold, S. S. Dual chamber rate-adaptive pacing in patients with paroxysmal supraventricular arrhythmias. Pacing Clin. Electrophysiol. 16, 2168–2185 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Israel, C. W. et al. Pace-termination and pacing for prevention of atrial tachyarrhythmias: results from a multicenter study with an implantable device for atrial therapy. J. Cardiovasc. Electrophysiol. 12, 1121–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Boriani, G. et al. Effects of consistent atrial pacing and atrial rate stabilization—two pacing algorithms to suppress recurrent paroxysmal atrial fibrillation in brady–tachy syndrome. Eur. Heart J. 3 (Suppl. P), 7–15 (2001).

    Article  Google Scholar 

  75. Ricci, R. et al. Impact of consistent atrial pacing algorithm on premature atrial complex number and paroxysmal atrial fibrillation recurrences in brady–tachy syndrome: a randomized prospective cross over study. J. Interv. Card. Electrophysiol. 5, 33–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, M. A. et al. The effect of atrial pacing therapies on atrial tachyarrhythmia burden and frequency. J. Am. Coll. Cardiol. 41, 1926–1932 (2003).

    Article  PubMed  Google Scholar 

  77. Carlson, M. D. et al. A new pacemaker algorithm for the treatment of atrial fibrillation. J. Am. Coll. Cardiol. 42, 627–633 (2003).

    Article  PubMed  Google Scholar 

  78. Blanc, J. J. et al. Atrial pacing for prevention of atrial fibrillation: assessment of simultaneously implemented algorithms. Europace 26, 371–379 (2004).

    Article  Google Scholar 

  79. Camm, A. J. et al. Conventional and dedicated atrial overdrive pacing for the prevention of paroxysmal atrial fibrillation: the AFTherapy study. Europace 9, 1110–1118 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Sulke, N. et al. The use of atrial overdrive and ventricular rate stabilization pacing algorithms for the prevention and treatment of paroxysmal atrial fibrillation: the Pacemaker Atrial Fibrillation Suppression (PAFS) study. Europace 9, 790–797 (2007).

    Article  PubMed  Google Scholar 

  81. Gold, M. R. et al. Impact of atrial prevention pacing on atrial fibrillation burden: primary results of the Study of Atrial Fibrillation Reduction (SAFARI) trial. Heart Rhythm 6, 295–301 (2009).

    Article  PubMed  Google Scholar 

  82. Hohnloser, S. H. et al. Atrial overdrive pacing to prevent atrial fibrillation: insights from ASSERT. Heart Rhythm 9, 1667–1673 (2012).

    Article  PubMed  Google Scholar 

  83. Savelieva, I. & Camm, A. J. The results of pacing trials for the prevention and termination of atrial tachyarrhythmias: is there any evidence of therapeutic breakthrough? J. Interv. Card. Electrophysiol. 8, 103–115 (2003).

    Article  PubMed  Google Scholar 

  84. Padeletti, L. et al. Interatrial septum pacing: a new approach to prevent recurrent atrial fibrillation. J. Interv. Card. Electrophysiol. 3, 35–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Padeletti, L. et al. Randomized crossover comparison of right atrial appendage pacing versus interatrial septum pacing for prevention of paroxysmal atrial fibrillation in patients with sinus bradycardia. Am. Heart J. 142, 1047–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Bailin, S. J., Adler, S. & Giudici, M. Prevention of chronic atrial fibrillation by pacing in the region of Bachmann's bundle: results of a multicenter randomized trial. J. Cardiovasc. Electrophysiol. 12, 912–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Padeletti, L. et al. Combined efficacy of atrial septal lead placement and atrial pacing algorithms for prevention of paroxysmal atrial tachyarrhythmia. J. Cardiovasc. Electrophysiol. 14, 1189–1195 (2003).

    Article  PubMed  Google Scholar 

  88. Lau, C. P. et al. Prospective randomized study to assess the efficacy of site and rate of atrial pacing on long-term progression of atrial fibrillation in sick sinus syndrome: Septal Pacing for Atrial Fibrillation Suppression Evaluation (SAFE) study. Circulation 128, 687–693 (2013).

    Article  PubMed  Google Scholar 

  89. Israel, C. W. & Hohnloser, S. H. Pacing to prevent atrial fibrillation. J. Cardiovasc. Electrophysiol. 14 (Suppl. 9), S20–S26 (2003).

    Article  PubMed  Google Scholar 

  90. Levy, T., Walker, S., Rochelle, J. & Paul, V. Evaluation of biatrial pacing, right atrial pacing, and no pacing in patients with drug refractory atrial fibrillation. Am. J. Cardiol. 84, 426–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Saksena, S. et al. Improved suppression of recurrent atrial fibrillation with dual-site right atrial pacing and antiarrhythmic drug therapy. J. Am. Coll. Cardiol. 40, 1140–1150 (2002).

    Article  PubMed  Google Scholar 

  92. Peters, R. W., Shorofsky, S. R., Pelini, M., Olsovsky, M. & Gold, M. R. Overdrive atrial pacing for reversion of atrial flutter: comparison of postoperative with nonpostoperative patients. Am. Heart J. 137, 100–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Hii, J. T. Y., Mitchell, B., Duff, H. J., Wyse, D. G. & Gillis, A. M. Comparison of atrial overdrive pacing with and without extrastimuli for termination of atrial flutter. Am. J. Cardiol. 70, 463–467 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Israel, C. W. et al. Prevalence, characteristics and clinical implications of regular atrial tachyarrhythmias in patients with atrial fibrillation: Insights from a study using a new implantable device. J. Am. Coll. Cardiol. 38, 355–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Gillis, A. M. et al. Safety and efficacy of advanced atrial pacing therapies for atrial tachyarrhythmias in patients with a new implantable dual chamber cardioverter-defibrillator. J. Am. Coll. Cardiol. 40, 1653–1659 (2002).

    Article  PubMed  Google Scholar 

  96. Roithinger, F. X., Karch, M. R., Steiner, P. R., SippensGroenewegen, A. & Lesh, M. D. Relationship between atrial fibrillation and typical atrial flutter in humans: activation sequence changes during spontaneous conversion. Circulation 96, 3484–3491 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Adler, S. W. et al. Efficacy of pacing therapies for treating atrial tachyarrhythmias in patients with ventricular arrhythmias receiving a dual-chamber implantable cardioverter defibrillator. Circulation 104, 887–892 (2001).

    Article  PubMed  Google Scholar 

  98. Ricci, R. et al. Antitachycardia pacing therapy to treat spontaneous atrial tachyarrhythmias: the 7250 dual defibrillator Italian registry. Eur. Heart J. 3 (Suppl. P), P25–P32 (2001).

    Article  Google Scholar 

  99. Gold, M. R., Sulke, N., Schwartzman, D. S., Mehra, R. & Euler, D. E. Clinical experience with a dual chamber implantable cardioverter defibrillator to treat atrial tachyarrhythmias. J. Cardiovasc. Electrophysiol. 12, 1247–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Friedman, P. A. et al. Atrial therapies reduce atrial arrhythmia burden in defibrillator patients. Circulation 104, 1023–1028 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Gillis, A. M., Koehler, J., Morck, M., Mehra, R. & Hettrick, D. A. High atrial antitachycardia pacing therapy efficacy is associated with a reduction in atrial tachyarrhythmia burden in a subset of patients with sinus node dysfunction and paroxysmal atrial fibrillation. Heart Rhythm 2, 791–796 (2005).

    Article  PubMed  Google Scholar 

  102. Padeletti, L. et al. Long-term reduction of atrial tachyarrhythmia recurrences in patients paced for bradycardia-tachycardia syndrome. Heart Rhythm 2, 1047–1057 (2005).

    Article  PubMed  Google Scholar 

  103. Israel, C. W. et al. Pace-termination and pacing for prevention of atrial tachyarrhythmias: results from a multicenter study with an implantable device for atrial therapy. J. Cardiovasc. Electrophysiol. 12, 1121–1128 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Boriani, G. et al. Predictors of atrial antitachycardia pacing efficacy in patients affected by brady-tachy form of sick sinus syndrome and implanted with a DDDRP device. J. Cardiovasc. Electrophysiol. 16, 714–723 (2005).

    Article  PubMed  Google Scholar 

  105. Lewalter, T. et al. Individualized selection of pacing algorithms for the prevention of recurrent atrial fibrillation: results from the VIP registry. Pacing Clin. Electrophysiol. 29, 124–134 (2006).

    Article  PubMed  Google Scholar 

  106. Purerfellner, H. et al. Reduction of atrial tachyarrhythmia episodes during the overdrive pacing period using the post-mode switch overdrive pacing (PMOP) algorithm. Heart Rhythm 3, 1164–1171 (2006).

    Article  PubMed  Google Scholar 

  107. Padeletti, L. et al. Temporal variability of atrial tachyarrhythmia burden in bradycardia-tachycardia syndrome patients. Eur. Heart J. 26, 165–172 (2005).

    Article  PubMed  Google Scholar 

  108. Botto, G. L. et al. Temporal variability of atrial fibrillation in pacemaker recipients for bradycardia: implications for crossover designed trials, study sample size, and identification of responder patients by means of arrhythmia burden. J. Cardiovasc. Electrophysiol. 18, 250–257 (2007).

    Article  PubMed  Google Scholar 

  109. Funck, R. C. et al. The MINERVA study design and rationale: a controlled randomized trial to assess the clinical benefit of minimizing ventricular pacing in pacemaker patients with atrial tachyarrhythmias. Am. Heart J. 156, 445–451 (2008).

    Article  PubMed  Google Scholar 

  110. Boriani, G. et al. Atrial antitachycardia pacing and managed ventricular pacing in bradycardia patients with paroxysmal or persistent atrial tachyarrhythmias: the MINERVA randomized multicentre international trial. Eur. Heart J. 35, 2352–2362 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Padeletti, L. et al. The effects of reactive atrial antitachycardia pacing on the progression of atrial tachyarrhythmias: application of the randomized MINERVA trial [abstract]. Presented at Heart Rhythm Society—Heart Rhythm on Demand 2014.

  112. Nagarakanti, R. et al. Progression of new onset to established persistent atrial fibrillation: an implantable device-based analysis with implications for clinical classification of persistent atrial fibrillation. J. Interv. Card. Electrophysiol. 32, 7–15 (2011).

    Article  PubMed  Google Scholar 

  113. Leong, D. P., Eikelboom, J. W., Healey, J. S. & Connolly, S. J. Atrial fibrillation is associated with increased mortality: causation or association? Eur. Heart J. 34, 1027–1030 (2013).

    Article  PubMed  Google Scholar 

  114. Al-Khatib, S. M. et al. Outcomes of apixaban vs. warfarin by type and duration of atrial fibrillation: results from the ARISTOTLE trial. Eur. Heart J. 34, 2464–2471 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Gierula, J. et al. Patients with long-term permanent pacemakers have a high prevalence of left ventricular dysfunction. J. Cardiovasc. Med. (Hagerstown) http://dx.doi.org/10.2459/JCM.0000000000000117.

  116. Boriani, G. et al. Effects of enhanced pacing modalities on healthcare resources utilization and costs in bradycardia patients: an analysis of the randomized MINERVA trial. Heart Rhythm http://dx.doi.org/doi:10.1016/j.hrthm.2015.02.017.

    Article  PubMed  Google Scholar 

  117. Tracy, C. M. et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Heart Rhythm 9, 1737–1753 (2012).

    Article  PubMed  Google Scholar 

  118. Brignole, M. et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 15, 1070–1118 (2013).

    Article  PubMed  Google Scholar 

  119. Gillis, A. M. et al. HRS/ACCF expert consensus statement on pacemaker device and mode selection. Heart Rhythm 9, 1344–1365 (2012).

    Article  PubMed  Google Scholar 

  120. Boriani, G. et al. Role of ventricular autocapture function in increasing longevity of DDDR pacemakers: a prospective study. Europace 8, 216–220 (2006).

    Article  PubMed  Google Scholar 

  121. Biffi, M. et al. Actual pacemaker longevity: the benefit of stimulation by automatic capture verification. Pacing Clin. Electrophysiol. 33, 873–881 (2010).

    Article  PubMed  Google Scholar 

  122. Antonelli, D., Freedberg, N. A., Bushari, L. I., Feldman, A. & Turgeman, Y. Permanent pacing in nonagenarians over 20-year period. Pacing Clin. Electrophysiol. 38, 48–53 (2015).

    Article  PubMed  Google Scholar 

  123. Cohn, J. N. Continue what we are doing to treat HF, but do it better. Nat. Rev. Cardiol. 11, 69–70 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Grammatico (Medtronic, Rome, Italy) for his important contribution in collecting all the literature on the discussed topics and for help in planning and completing the MINERVA study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Boriani.

Ethics declarations

Competing interests

G.B. received modest speaker fees from Boston Scientific and Medtronic. L.P. received modest research grants and consultant or advisory board grants from Boston Scientific, Medtronic, and St. Jude Medical.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boriani, G., Padeletti, L. Management of atrial fibrillation in bradyarrhythmias. Nat Rev Cardiol 12, 337–349 (2015). https://doi.org/10.1038/nrcardio.2015.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing