Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Considerations for cardiac device lead extraction

Key Points

  • Lead extraction procedures are becoming common owing to the growing number of implantations in an ageing population, frequent device infections, and lead recalls and malfunctions

  • The most common indication for lead extraction is infection

  • Lead extraction procedures need to be performed at specialized centres because major complications, such as perforation or avulsion, can occur

  • Manual mechanical dilatation sheaths or those powered mechanically or that use laser energy are safe methods of extraction

  • Lead management strategies should be a multidisciplinary, collaborative effort and include appropriate implantation techniques, infection prevention, and lead selection

Abstract

Extraction of cardiovascular implantable electronic device leads is the removal of a lead that has been implanted for >1 year or that requires more than a standard stylet. The number of these procedures has greatly increased over the past few decades owing to the growing demand for primary and secondary implantations in ageing populations, and an accompanying rise in revisions for complications, infections, and lead advisory safety alerts. In this Review, we present the most common indications and techniques used for extraction. Particular consideration is given to the extraction of leads with large vegetations, recalled leads, stented leads, and those placed in the coronary sinus. We also summarize the most relevant and contemporary data on safety, efficacy, and outcomes of lead extraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of fibrotic attachments.
Figure 2: Grossly externalized cables of a Riata® lead (St. Jude Medical, USA).
Figure 3: Venogram before planned upgrade.
Figure 4: Adhesions on an extracted lead.
Figure 5: Nomogram for prediction of 30-day mortality after lead extraction24.
Figure 6: Use of a laser sheath in a venous branch of the coronary sinus for extraction of an Attain Starfix® (Medtronic, USA) active fixation lead.

Similar content being viewed by others

References

  1. Wilkoff, B. L. et al. Transvenous lead extraction: Heart Rhythm Society expert consensus on facilities, training, indications, and patient management: this document was endorsed by the American Heart Association (AHA). Heart Rhythm 6, 1085–1104 (2009).

    Article  PubMed  Google Scholar 

  2. Hammill, S. C. et al. Review of the registry's fourth year, incorporating lead data and pediatric ICD procedures, and use as a national performance measure. Heart Rhythm 7, 1340–1345 (2010).

    Article  PubMed  Google Scholar 

  3. Hammill, S. C. et al. Review of the ICD Registry's third year, expansion to include lead data and pediatric ICD procedures, and role for measuring performance. Heart Rhythm 6, 1397–1401 (2009).

    Article  PubMed  Google Scholar 

  4. Hammill, S. C. et al. Review of the Registry's second year, data collected, and plans to add lead and pediatric ICD procedures. Heart Rhythm 5, 1359–1363 (2008).

    Article  PubMed  Google Scholar 

  5. Hammill, S., Phurrough, S. & Brindis, R. The National ICD Registry: now and into the future. Heart Rhythm 3, 470–473 (2006).

    Article  PubMed  Google Scholar 

  6. Cabell, C. H. et al. Increasing rates of cardiac device infections among Medicare beneficiaries: 1990–1999. Am. Heart J. 147, 582–586 (2004).

    Article  PubMed  Google Scholar 

  7. Voigt, A., Shalaby, A. & Saba, S. Rising rates of cardiac rhythm management device infections in the United States: 1996 through 2003. J. Am. Coll. Cardiol. 48, 590–591 (2006).

    Article  PubMed  Google Scholar 

  8. Gould, P. A. et al. Outcome of advisory implantable cardioverter-defibrillator replacement: one-year follow-up. Heart Rhythm 5, 1675–1681 (2008).

    Article  PubMed  Google Scholar 

  9. Klug, D. et al. Risk factors related to infections of implanted pacemakers and cardioverter-defibrillators: results of a large prospective study. Circulation 116, 1349–1355 (2007).

    Article  PubMed  Google Scholar 

  10. Krahn, A. D. et al. Outcome of the Fidelis implantable cardioverter-defibrillator lead advisory: a report from the Canadian Heart Rhythm Society Device Advisory Committee. Heart Rhythm 5, 639–642 (2008).

    Article  PubMed  Google Scholar 

  11. Krahn, A. D. et al. Utilization of a national network for rapid response to the Medtronic Fidelis lead advisory: the Canadian Heart Rhythm Society Device Advisory Committee. Heart Rhythm 6, 474–477 (2009).

    Article  PubMed  Google Scholar 

  12. Poole, J. E. et al. Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE Registry. Circulation 122, 1553–1561 (2010).

    Article  PubMed  Google Scholar 

  13. Greenspon, A. J. et al. 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. J. Am. Coll. Cardiol. 58, 1001–1006 (2011).

    Article  PubMed  Google Scholar 

  14. Byrd, C. L., Wilkoff, B. L., Love, C. J., Sellers, T. D. & Reiser, C. Clinical study of the laser sheath for lead extraction: the total experience in the United States. Pacing Clin. Electrophysiol. 25, 804–808 (2002).

    Article  PubMed  Google Scholar 

  15. Byrd, C. L. et al. Intravascular extraction of problematic or infected permanent pacemaker leads: 1994–1996. U.S. Extraction Database, MED Institute. Pacing Clin. Electrophysiol. 22, 1348–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Maytin, M., Jones, S. O. & Epstein, L. M. Long-term mortality after transvenous lead extraction. Circ. Arrhythm. Electrophysiol. 5, 252–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Sohail, M. R. et al. Infective endocarditis complicating permanent pacemaker and implantable cardioverter-defibrillator infection. Mayo Clin. Proc. 83, 46–53 (2008).

    Article  PubMed  Google Scholar 

  18. Sohail, M. R. et al. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J. Am. Coll. Cardiol. 49, 1851–1859 (2007).

    Article  PubMed  Google Scholar 

  19. Tarakji, K. G. et al. Cardiac implantable electronic device infections: presentation, management, and patient outcomes. Heart Rhythm 7, 1043–1047 (2010).

    Article  PubMed  Google Scholar 

  20. Tarakji, K. G. et al. Risk factors for 1-year mortality among patients with cardiac implantable electronic device infection undergoing transvenous lead extraction: the impact of the infection type and the presence of vegetation on survival. Europace 16, 1490–1495 (2014).

    Article  PubMed  Google Scholar 

  21. Wazni, O. et al. Lead extraction in the contemporary setting: the LExICon study: an observational retrospective study of consecutive laser lead extractions. J. Am. Coll. Cardiol. 55, 579–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Klug, D. et al. Local symptoms at the site of pacemaker implantation indicate latent systemic infection. Heart 90, 882–886 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Noheria, A. et al. Pulmonary embolism in patients with transvenous cardiac implantable electronic device leads. Europace http://dx.doi.org/10.1093/europace/euv038 (2015).

  24. Brunner, M. P. et al. Nomogram for predicting 30-day all-cause mortality after transvenous pacemaker and defibrillator lead extraction. Heart Rhythm 12, 2381–2386 (2015).

    Article  PubMed  Google Scholar 

  25. Le, K. Y. et al. Impact of timing of device removal on mortality in patients with cardiovascular implantable electronic device infections. Heart Rhythm 8, 1678–1685 (2011).

    Article  PubMed  Google Scholar 

  26. de Bie, M. K. et al. Cardiac device infections are associated with a significant mortality risk. Heart Rhythm 9, 494–498 (2012).

    Article  PubMed  Google Scholar 

  27. Knigina, L. et al. Treatment of patients with recurrent or persistent infection of cardiac implantable electronic devices. Europace 12, 1275–1281 (2010).

    Article  PubMed  Google Scholar 

  28. Sohail, M. R., Sultan, O. W. & Raza, S. S. Contemporary management of cardiovascular implantable electronic device infections. Expert Rev. Anti Infect. Ther. 8, 831–839 (2010).

    Article  PubMed  Google Scholar 

  29. Baddour, L. M. et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121, 458–477 (2010).

    Article  PubMed  Google Scholar 

  30. Hauser, R. G. & Hayes, D. L. Increasing hazard of Sprint Fidelis implantable cardioverter-defibrillator lead failure. Heart Rhythm 6, 605–610 (2009).

    Article  PubMed  Google Scholar 

  31. Hauser, R. G., Kallinen, L. M., Almquist, A. K., Gornick, C. C. & Katsiyiannis, W. T. Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead. Heart Rhythm 4, 892–896 (2007).

    Article  PubMed  Google Scholar 

  32. Hauser, R. G., McGriff, D. & Retel, L. K. Riata implantable cardioverter-defibrillator lead failure: analysis of explanted leads with a unique insulation defect. Heart Rhythm. 9, 472–749 (2012).

    Article  Google Scholar 

  33. Kallinen, L. M. et al. Failure of impedance monitoring to prevent adverse clinical events caused by fracture of a recalled high-voltage implantable cardioverter-defibrillator lead. Heart Rhythm 5, 775–779 (2008).

    Article  PubMed  Google Scholar 

  34. Kleemann, T. et al. Annual rate of transvenous defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years. Circulation 115, 2474–2480 (2007).

    Article  PubMed  Google Scholar 

  35. Hauser, R. G. Here we go again — another failure of postmarketing device surveillance. N. Engl. J. Med. 366, 873–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Heidbuchel, H. et al. Potential role of remote monitoring for scheduled and unscheduled evaluations of patients with an implantable defibrillator. Europace 10, 351–357 (2008).

    Article  PubMed  Google Scholar 

  37. Henrikson, C. A. The Sprint Fidelis story: where are we now? Heart Rhythm 6, 611–612 (2009).

    Article  PubMed  Google Scholar 

  38. Maytin, M. et al. Multicenter experience with extraction of the Sprint Fidelis implantable cardioverter-defibrillator lead. J. Am. Coll. Cardiol. 56, 646–650 (2010).

    Article  PubMed  Google Scholar 

  39. Neuzil, P., Taborsky, M., Holy, F. & Wallbrueck, K. Early automatic remote detection of combined lead insulation defect and ICD damage. Europace 10, 556–557 (2008).

    Article  PubMed  Google Scholar 

  40. Brunner, M. P. et al. Transvenous extraction of implantable cardioverter-defibrillator leads under advisory — a comparison of Riata, Sprint Fidelis, and non-recalled implantable cardioverter-defibrillator leads. Heart Rhythm 10, 1444–1450 (2013).

    Article  PubMed  Google Scholar 

  41. El-Chami, M. F. et al. Outcomes of Sprint Fidelis and Riata lead extraction: data from 2 high-volume centers. Heart Rhythm 12, 1216–1220 (2015).

    Article  PubMed  Google Scholar 

  42. Ellenbogen, K. A., Wood, M. A. & Swerdlow, C. D. The Sprint Fidelis lead fracture story: what do we really know and where do we go from here? Heart Rhythm 5, 1380–1381 (2008).

    Article  PubMed  Google Scholar 

  43. Farwell, D., Green, M. S., Lemery, R., Gollob, M. H. & Birnie, D. H. Accelerating risk of Fidelis lead fracture. Heart Rhythm 5, 1375–1379 (2008).

    Article  PubMed  Google Scholar 

  44. Epstein, A. E. et al. Performance of the St. Jude Medical Riata leads. Heart Rhythm 6, 204–209 (2009).

    Article  PubMed  Google Scholar 

  45. Henrikson, C. A. The Riata story — where are we now? Heart Rhythm. 9, 750–751 (2012).

    Article  PubMed  Google Scholar 

  46. Schmutz, M. et al. Prevalence of asymptomatic and electrically undetectable intracardiac inside-out abrasion in silicon-coated Riata® and Riata® ST implantable cardioverter-defibrillator leads. Int. J. Cardiol. 167, 254–257 (2013).

    Article  PubMed  Google Scholar 

  47. Zeitler, E. P. et al. Cable externalization and electrical failure of the Riata family of implantable cardioverter-defibrillator leads: a systematic review and meta-analysis. Heart Rhythm 12, 1233–1240 (2015).

    Article  PubMed  Google Scholar 

  48. Maytin, M. et al. Multicenter experience with extraction of the Riata/Riata ST ICD lead. Heart Rhythm 11, 1613–1618 (2014).

    Article  PubMed  Google Scholar 

  49. Bongiorni, M. G. et al. Transvenous extraction profile of Riata leads: procedural outcomes and technical complexity of mechanical removal. Heart Rhythm 12, 580–587 (2015).

    Article  PubMed  Google Scholar 

  50. Richardson, T. D. et al. Comparative outcomes of transvenous extraction of sprint fidelis and riata defibrillator leads: a single center experience. J. Cardiovasc. Electrophysiol. 25, 36–42 (2014).

    Article  PubMed  Google Scholar 

  51. Grazia Bongiorni, M. et al. Management of malfunctioning and recalled pacemaker and defibrillator leads: results of the European Heart Rhythm Association survey. Europace 16, 1674–1678 (2014).

    Article  PubMed  Google Scholar 

  52. Love, C. J. Update on indications, techniques, and complications of cardiac implantable device lead extraction. Curr. Treat. Options Cardiovasc. Med. 14, 565–570 (2012).

    Article  PubMed  Google Scholar 

  53. Worley, S. J., Gohn, D. C. & Pulliam, R. W. Over the wire lead extraction and focused force venoplasty to regain venous access in a totally occluded subclavian vein. J. Interv. Card. Electrophysiol. 23, 135–137 (2008).

    Article  PubMed  Google Scholar 

  54. Maytin, M., Epstein, L. M. & Henrikson, C. A. Lead extraction is preferred for lead revisions and system upgrades: when less is more. Circ. Arrhythm. Electrophysiol. 3, 413–424 (2010).

    Article  PubMed  Google Scholar 

  55. Borek, P. P. & Wilkoff, B. L. Pacemaker and ICD leads: strategies for long-term management. J. Interv. Card. Electrophysiol. 23, 59–72 (2008).

    Article  PubMed  Google Scholar 

  56. Bracke, F. A. Yes we can! But should we? Lead extraction for superfluous pacemaker and implanted cardioverter-defibrillator leads. Europace 11, 546–547 (2009).

    Article  PubMed  Google Scholar 

  57. Korley, V. J., Hallet, N., Daoust, M. & Epstein, L. M. A novel indication for transvenous lead extraction: upgrading implantable cardioverter defibrillator systems. J. Interv. Card. Electrophysiol. 4, 523–528 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Bracke, F. A., van Gelder, L. M., Sreeram, N. & Meijer, A. Exchange of pacing or defibrillator leads following laser sheath extraction of non-functional leads in patients with ipsilateral obstructed venous access. Heart 83, E12 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levine, P. A. Should lead explantation be the practice standard when a lead needs to be replaced? Pacing Clin. Electrophysiol. 23, 421–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Gula, L. J. et al. Central venous occlusion is not an obstacle to device upgrade with the assistance of laser extraction. Pacing Clin. Electrophysiol. 28, 661–666 (2005).

    Article  PubMed  Google Scholar 

  61. Suga, C., Hayes, D. L., Hyberger, L. K. & Lloyd, M. A. Is there an adverse outcome from abandoned pacing leads? J. Interv. Card. Electrophysiol. 4, 493–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Furman, S., Behrens, M., Andrews, C. & Klementowicz, P. Retained pacemaker leads. J. Thorac Cardiovasc. Surg. 94, 770–772 (1987).

    CAS  PubMed  Google Scholar 

  63. Bohm, A. et al. Complications due to abandoned noninfected pacemaker leads. Pacing Clin. Electrophysiol. 24, 1721–1724 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. de Cock, C. C., Vinkers, M., Van Campe, L. C., Verhorst, P. M. & Visser, C. A. Long-term outcome of patients with multiple (> or = 3) noninfected transvenous leads: a clinical and echocardiographic study. Pacing Clin. Electrophysiol. 23, 423–426 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Wollmann, C. G. et al. Incidence of complications in patients with implantable cardioverter/defibrillator who receive additional transvenous pace/sense leads. Pacing Clin. Electrophysiol. 28, 795–800 (2005).

    Article  PubMed  Google Scholar 

  66. Glikson, M. et al. Do abandoned leads pose risk to implantable cardioverter-defibrillator patients? Heart Rhythm 6, 65–68 (2009).

    Article  PubMed  Google Scholar 

  67. Huang, X. M. et al. Extraction of superfluous device leads: a comparison with removal of infected leads. Heart Rhythm 12, 1177–1182 (2015).

    Article  PubMed  Google Scholar 

  68. Huang, T. Y. & Baba, N. Cardiac pathology of transvenous pacemakers. Am. Heart J. 83, 469–474 (1972).

    Article  CAS  PubMed  Google Scholar 

  69. Rennert, R. C. et al. A histological and mechanical analysis of the cardiac lead-tissue interface: implications for lead extraction. Acta Biomater. 10, 2200–2208 (2014).

    Article  PubMed  Google Scholar 

  70. Epstein, A. E., Kay, G. N., Plumb, V. J., Dailey, S. M. & Anderson, P. G. Gross and microscopic pathological changes associated with nonthoracotomy implantable defibrillator leads. Circulation 98, 1517–1524 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Bongiorni, M. G. et al. Usefulness of mechanical transvenous dilation and location of areas of adherence in patients undergoing coronary sinus lead extraction. Europace 9, 69–73 (2007).

    Article  PubMed  Google Scholar 

  72. Bongiorni, M. G. et al. Safety and efficacy of internal transjugular approach for transvenous extraction of implantable cardioverter defibrillator leads. Europace 16, 1356–1362 (2014).

    Article  PubMed  Google Scholar 

  73. Smith, H. J. et al. Five-years experience with intravascular lead extraction. Pacing Clin. Electrophysiol. 17, 2016–2020 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Segreti, L. et al. Major predictors of fibrous adherences in transvenous implantable cardioverter-defibrillator lead extraction. Heart Rhythm 11, 2196–2201 (2014).

    Article  PubMed  Google Scholar 

  75. Brunner, M. P. et al. Outcomes of patients requiring emergent surgical or endovascular intervention for catastrophic complications during transvenous lead extraction. Heart Rhythm 11, 419–425 (2014).

    Article  PubMed  Google Scholar 

  76. Patel, N. et al. Vacuum assisted vegetation extraction for the management of large lead vegetations. J. Card. Surg. 28, 321–324 (2013).

    Article  PubMed  Google Scholar 

  77. Vaccarino, G. N. et al. Pacemaker endocarditis: approach for lead extraction in endocarditis with large vegetations. Rev. Bras. Cir. Cardiovasc. 24, 570–573 (2009).

    Article  PubMed  Google Scholar 

  78. Ruttmann, E. et al. Transvenous pacemaker lead removal is safe and effective even in large vegetations: an analysis of 53 cases of pacemaker lead endocarditis. Pacing Clin. Electrophysiol. 29, 231–236 (2006).

    Article  PubMed  Google Scholar 

  79. Wilkoff, B. L. et al. Improved extraction of ePTFE and medical adhesive modified defibrillation leads from the coronary sinus and great cardiac vein. Pacing Clin. Electrophysiol. 28, 205–211 (2005).

    Article  PubMed  Google Scholar 

  80. Malecka, B., Kutarski, A. & Grabowski, M. Is the transvenous extraction of cardioverter-defibrillator leads more hazardous than that of pacemaker leads? Kardiol. Pol. 68, 884–890 (2010).

    PubMed  Google Scholar 

  81. Saad, E. B. et al. Nonthoracotomy implantable defibrillator lead extraction: results and comparison with extraction of pacemaker leads. Pacing Clin. Electrophysiol. 26, 1944–1950 (2003).

    Article  PubMed  Google Scholar 

  82. Epstein, L. M. et al. Superior vena cava defibrillator coils make transvenous lead extraction more challenging and riskier. J. Am. Coll. Cardiol. 61, 987–989 (2013).

    Article  PubMed  Google Scholar 

  83. Di Cori, A. et al. Transvenous extraction performance of expanded polytetrafluoroethylene covered ICD leads in comparison to traditional ICD leads in humans. Pacing Clin. Electrophysiol. 33, 1376–1381 (2010).

    Article  PubMed  Google Scholar 

  84. Hackler, J. W. et al. Effectiveness of implantable cardioverter-defibrillator lead coil treatments in facilitating ease of extraction. Heart Rhythm 7, 890–897 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. di Cori, A. et al. Large, single-center experience in transvenous coronary sinus lead extraction: procedural outcomes and predictors for mechanical dilatation. Pacing Clin. Electrophysiol. 35, 215–222 (2012).

    Article  PubMed  Google Scholar 

  86. Moynahan, M., Duggirala, H., Dwyer, D. & Fellman, M. FDA approved the Medtronic model 4195 Attain Starfix coronary sinus lead. Heart Rhythm 7, e3–e4 (2010).

    Article  PubMed  Google Scholar 

  87. Baranowski, B., Yerkey, M., Dresing, T. & Wilkoff, B. L. Fibrotic tissue growth into the extendable lobes of an active fixation coronary sinus lead can complicate extraction. Pacing Clin. Electrophysiol. 34, e64–e65 (2011).

    Article  PubMed  Google Scholar 

  88. Cronin, E. M. et al. Active fixation mechanism complicates coronary sinus lead extraction and limits subsequent reimplantation targets. J. Interv. Card. Electrophysiol. 36, 81–86 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Maytin, M. et al. Multicenter experience with transvenous lead extraction of active fixation coronary sinus leads. Pacing Clin. Electrophysiol. 35, 641–647 (2012).

    Article  PubMed  Google Scholar 

  90. Bontempi, L. et al. Extraction of a coronary sinus lead: always so easy? J. Cardiovasc. Med. (Hagerstown) http://dx.doi.org/10.2459/JCM.0000000000000018 (2014).

  91. Kypta, A., Honig, S. & Steinwender, C. Removal of a chronically implanted active-fixation coronary sinus pacing lead using the Cook Evolution© lead extraction sheath. Europace 16, 625 (2014).

    Article  PubMed  Google Scholar 

  92. Lisy, M. et al. Coronary sinus lead extraction in CRT patients with CIED-related infection: risks, implications and outcomes. Minerva Cardioangiol. 63, 91–98 (2015).

    CAS  PubMed  Google Scholar 

  93. Tyers, G. F., Clark, J., Wang, Y., Mills, P. & Bashir, J. Coronary sinus lead extraction. Pacing Clin. Electrophysiol. 26, 524–526 (2003).

    Article  PubMed  Google Scholar 

  94. Baranowski, B. et al. Percutaneous extraction of stented device leads. Heart Rhythm 9, 723–727 (2012).

    Article  PubMed  Google Scholar 

  95. Bongiorni, M. G. et al. Transvenous removal of pacing and implantable cardiac defibrillating leads using single sheath mechanical dilatation and multiple venous approaches: high success rate and safety in more than 2000 leads. Eur. Heart J. 29, 2886–2893 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Bruce L. Wilkoff.

Ethics declarations

Competing interests

O.W. and B.L.W. have received honoraria from Spectranetics.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazni, O., Wilkoff, B. Considerations for cardiac device lead extraction. Nat Rev Cardiol 13, 221–229 (2016). https://doi.org/10.1038/nrcardio.2015.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing