Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry

Abstract

Protein complexes form, dissociate and re-form in order to perform specific cellular functions. In this two-pronged protocol, noncovalent protein complexes are initially isolated by affinity purification for subsequent identification of the components by liquid chromatography high-resolution mass spectrometry (LC-MS) on a hybrid LTQ Orbitrap Velos. In the second prong of the approach, the affinity-purification strategy includes a chemical cross-linking step to 'freeze' a series of concurrently formed, heterogeneous protein subcomplex species that are visualized by gel electrophoresis. This branch of the methodology amalgamates standard and well-practiced laboratory methods to reveal compositional changes that occur in protein complex architecture. By using mouse N-terminally tagged streptavidin-binding peptide–hemagglutinin–TANK-binding kinase 1 (SH-TBK1), we chemically cross-linked the affinity-purified complex of SH-TBK1 with the homobifunctional lysine-specific reagent bis(sulfosuccinimidyl) suberate (BS3), and we separated the resultant protein complexes by denaturation and by silver-stained one- and two-dimensional SDS-PAGE. We observed a range of cross-linked TBK1 complexes of variable pI and Mr and confirmed them by immunoblotting. LC-MS analysis of in situ–digested cross-linked proteins shows differences in the composition of the TBK1 subcomplexes. The protocol is inherently simple and can be readily extended to the investigation of a range of protein complexes. From cell lysis to data generation by LC-MS, the protocol takes approximately 2.5 to 5.5 d to perform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the entire protocol.
Figure 2: SH-tagged TBK1 protein complexes separated by 1D (lanes 1–3) and 2D (regions 4 and 5) SDS-PAGE) on 3–8% (wt/vol) Tris-acetate gradient gels.

Similar content being viewed by others

References

  1. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Gingras, A.C., Gstaiger, M., Raught, B. & Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell. Biol. 8, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kocher, T. & Superti-Furga, G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods 4, 807–815 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Collins, M.O. & Choudhary, J.S. Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr. Opin. Biotechnol. 19, 324–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y. The tandem affinity purification technology: an overview. Biotechnol. Lett. 33, 1487–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol. Syst. Biol. 5, 237 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pichlmair, A. et al. Viral immune modulators perturb the human molecular network by common and unique strategies. Nature 487, 486–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Ewing, R.M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Haura, E.B. et al. Using iTRAQ combined with tandem affinity purification to enhance low-abundance proteins associated with somatically mutated EGFR core complexes in lung cancer. J. Proteome Res. 10, 182–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Haura, E.B. et al. Optimisation of downscaled tandem affinity purifications to identify core protein complexes. J. Integr. OMICS 2, 55–68 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell. Biol. 6, 97–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Brajenovic, M., Joberty, G., Kuster, B., Bouwmeester, T. & Drewes, G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J. Biol. Chem. 279, 12804–12811 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Gloeckner, C.J., Boldt, K., Schumacher, A. & Ueffing, M. Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Methods Mol. Biol. 564, 359–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Goncalves, A. et al. Functional dissection of the TBK1 molecular network. PLoS ONE 6, e23971 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertwistle, D., Sugimoto, M. & Sherr, C.J. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol. Cell. Biol. 24, 985–996 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vanacova, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol. 3, 986–997 (2005).

    Article  CAS  Google Scholar 

  24. Bürckstümmer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. Riedel, C.G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brehme, M. et al. Charting the molecular network of the drug target Bcr-Abl. Proc. Natl. Acad. Sci. USA 106, 7414–7419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baumann, C.L. et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. J. Exp. Med. 207, 2689–2701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wojcik, J. et al. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Nat. Struct. Mol. Biol. 17, 519–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y., Franklin, S., Zhang, M.J. & Vondriska, T.M. Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: application to Bruton's tyrosine kinase. Protein Sci. 20, 140–149 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol. 12, 624–630 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Kachaner, D. et al. Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression. Mol. Cell. 45, 553–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Gingras, A.C., Aebersold, R. & Raught, B. Advances in protein complex analysis using mass spectrometry. J. Physiol. 563, 11–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Figeys, D. Mapping the human protein interactome. Cell. Res. 18, 716–724 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gstaiger, M. & Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 10, 617–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Sabido, E., Selevsek, N. & Aebersold, R. Mass spectrometry-based proteomics for systems biology. Curr. Opin. Biotechnol. 23, 591–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Fonslow, B.R. et al. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes. Anal. Chem. 82, 6643–6651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andersen, J.S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bennett, K.L., Matthiesen, T. & Roepstorff, P. Probing protein surface topology by chemical surface labeling, crosslinking, and mass spectrometry. Methods Mol. Biol. 146, 113–131 (2000).

    CAS  PubMed  Google Scholar 

  40. Bennett, K.L. et al. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping—a novel approach to assess intermolecular protein contacts. Protein Sci. 9, 1503–1518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sorensen, P. et al. Identification of protein-protein interfaces implicated in CD80-CD28 costimulatory signaling. J. Immunol. 172, 6803–6809 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wiener, M.C., Sachs, J.R., Deyanova, E.G. & Yates, N.A. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76, 6085–6096 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Zybailov, B. et al. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gordon, J.A. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 201, 477–482 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Abmayr, S.M., Yao, T., Parmely, T. & Workman, J.L. Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr. Protoc. Mol. Biol. 12, 12.1 (2006).

  50. Cardi, D. et al. Heterologous expression and affinity purification of eukaryotic membrane proteins in view of functional and structural studies: the example of the sarcoplasmic reticulum Ca2+-ATPase. Methods Mol. Biol. 601, 247–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Kratochwill, K. et al. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol. Dial. Transplant 27, 937–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kratochwill, K. et al. Interleukin-1 receptor-mediated inflammation impairs the heat shock response of human mesothelial cells. Am. J. Pathol. 178, 1544–1555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kratochwill, K. et al. Stress responses and conditioning effects in mesothelial cells exposed to peritoneal dialysis fluid. J. Proteome Res. 8, 1731–1747 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26, 3180–3190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chau, T.L. et al. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 33, 171–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Colinge, J., Masselot, A., Giron, M., Dessingy, T. & Magnin, J. OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Parikh, J.R. et al. multiplierz: an extensible API based desktop environment for proteomics data analysis. BMC Bioinformatics 10, 364 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Elias, J.E., Haas, W., Faherty, B.K. & Gygi, S.P. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods 2, 667–675 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Bürckstümmer from Haplogen GmbH, Vienna, for providing the mouse SH-TBK1 entry vector, A.C. Müller for valuable advice on iTRAQ quantification and desalting techniques; and all the members of the Superti-Furga and Bennett laboratories for helpful discussions. Work in our laboratory is supported by the Austrian Academy of Sciences, the Austrian Federal Ministry for Science and Research (Gen-Au projects, APP-III and BIN-III), the Austrian Science Fund FWF and the Central Bank of the Republic of Austria. E.L.R. and R.S. are supported by the GenAu APP-III program (no. 820965), and M.L.H. by the Central Bank of the Republic of Austria (no. 14252).

Author information

Authors and Affiliations

Authors

Contributions

E.L.R. developed the protocol, conducted the experiments, interpreted the data and drafted the manuscript. R.S. developed sections of the protocol, participated in optimizing the tandem affinity purification methodology, wrote sections of the manuscript and provided valuable feedback in the review process. K.K. provided intellectual and technical expertise in optimization of the 2D SDS-PAGE, performed the 2D SDS-PAGE experiments, interpreted the gel images and wrote the 2D SDS-PAGE sections of the manuscript. M.L.H. provided technical support with 1D SDS-PAGE and sample preparation for LC-MS, and assisted in writing sections of the manuscript and proofreading of the revised versions. M.G. and G.S.-F. provided intellectual expertise on tandem affinity purifications and valuable feedback during the revision process. K.L.B. and E.L.R. conceived the notion of the protocol. K.L.B. was responsible for project supervision, data interpretation, manuscript writing and providing grant support.

Corresponding author

Correspondence to Keiryn L Bennett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

SH-tagged TBK1 protein complexes. Complexes are separated by: (A) one- and (B) two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D- and 2D-SDS-PAGE) on 3-8% tris-acetate gradient gels. The different TBK1 sub-complexes and interacting proteins are: (a) SH-TBK1_M+TBK1_H, HS90A, HS90B, AZI2, TANK; (b) SH-TBK1_M+TBK1_H, TANK; (c) SH-TBK1_M+TBK1_H, HS90A, HS90B; (d) HS90A, HS90B; (e) HS90A, HS90B, TBKBP1; (f) SH-TBK1_M, TBK1_H, HS90A, HS90B; (g) SH-TBK1_M, TBK1_H, TBKBP1; (h) SH-TBK1_M, TBK1_H. Bold numbers in (A) are the molecular mass ranges of the 1D-SDS-PAGE. Unique peptide counts, spectral counts (or number of MSMS spectra matched to peptides), and sequence coverage are given for each sub-complex. (PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudashevskaya, E., Sacco, R., Kratochwill, K. et al. A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry. Nat Protoc 8, 75–97 (2013). https://doi.org/10.1038/nprot.2012.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.133

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing