Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selection of proteins with desired properties from natural proteome libraries using mRNA display

Abstract

mRNA display is a powerful yet challenging in vitro selection technique that can be used to identify proteins with desired properties from both natural proteome and combinatorial polypeptide libraries. The physical conjugation between a protein and its own RNA presents unique challenges in manipulating the displayed proteins at a low nanomolar scale in an RNase-free environment. The following protocol outlines the generation of cDNA libraries derived from natural organisms as well as the steps required for generation of mRNA-protein fusion molecules, in vitro functional selection and regeneration of the selected cDNA library. The selection procedures for the identification of protease substrates and Ca2+-dependent calmodulin-binding proteins from natural cDNA libraries are presented as examples. The method can be generally applied to the identification of protein sequences with desired properties from various natural proteome libraries. One round of mRNA display–based selection can be accomplished in 7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart and timing of the experimental steps required for one round of mRNA display–based selection.
Figure 2: Scheme for the selection of conditional (Ca2+-dependent) target-binding partners from an mRNA-displayed proteome library.
Figure 3: Scheme for the selection of the downstream substrates of a protease of interest from an mRNA-displayed proteome library.
Figure 4: cDNA library distribution and fusion formation.
Figure 5: Representative oligo(dT) purification of mRNA-protein fusion molecules from counting radioactivity present in the collected fractions.
Figure 6: Representative anti-FLAG purification of mRNA-protein fusion molecules from radioactivity present in the collected fractions.
Figure 7: Enrichment data for two different mRNA-display-based selections.
Figure 8: Functional validation of proteins identified from mRNA display–based selections.

Similar content being viewed by others

References

  1. Tateyama, S. et al. Affinity selection of DNA-binding protein complexes using mRNA display. Nucleic Acids. Res. 34, e27 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schilling, O., Huesgen, P.F., Barré, O., Auf dem Keller, U. & Overall, C.M. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat. Protoc. 6, 111–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Gevaert, K. et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Brockstedt, E. et al. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J. Biol. Chem. 273, 28057–28064 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Luban, J. & Goff, S.P. The yeast two-hybrid system for studying protein-protein interactions. Curr. Opin. Biotechnol. 6, 59–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, J. & Stagljar, I. Using the yeast two-hybrid system to identify interacting proteins. Methods Mol. Biol. 261, 247–262 (2004).

    CAS  PubMed  Google Scholar 

  8. Lin, H. & Cornish, V.W. Screening and selection methods for large-scale analysis of protein function. Angew. Chem. Int. Ed. Engl. 41, 4402–4425 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Parmley, S.F. & Smith, G.P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed on filamentous phage. Meth. Enzymol. 217, 228–257 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Conrad, U. & Scheller, J. Considerations on antibody-phage display methodology. Comb. Chem. High Throughput Screen 8, 117–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Weaver-Feldhaus, J.M., Miller, K.D., Feldhaus, M.J. & Siegel, R.W. Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng. Des. Sel. 18, 527–536 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Fukuda, N. et al. High-efficiency recovery of target cells using improved yeast display system for detection of protein-protein interactions. Appl. Microbiol. Biotechnol. 76, 151–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Jung, S.T., Jeong, K.J., Iverson, B.L. & Georgiou, G. Binding and enrichment of Escherichia coli spheroplasts expressing inner membrane tethered scFv antibodies on surface immobilized antigens. Biotechnol. Bioeng. 98, 39–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Mattheakis, L.C., Bhatt, R.R. & Dower, W.J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Hanes, J. & Plückthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Brückner, A., Polge, C., Lentze, N., Auerbach, D. & Schlattner, U. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763–2788 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, H., Jedynak, B.M. & Bader, J.S. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput. Biol. 3, e214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rhyner, C. et al. Cloning allergens via phage display. Methods 32, 212–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Adey, N.B. & Kay, B.K. Identification of calmodulin-binding peptide consensus sequences from a phage-displayed random peptide library. Gene 169, 133–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. He, M. & Taussig, M.J. Eukaryotic ribosome display with in situ DNA recovery. Nat. Methods 4, 281–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zahnd, C., Amstutz, P. & Plückthun, A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ju, W. et al. Proteome-wide identification of family member-specific natural substrate repertoire of caspases. Proc. Natl. Acad. Sci. USA 104, 14294–14299 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, X. et al. Scanning the human proteome for calmodulin-binding proteins. Proc. Natl. Acad. Sci. USA 102, 5969–5974 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, X. et al. Ca(2+)/Calmodulin-binding proteins from the C. elegans proteome. Cell Calcium 43, 444–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, B. & Liu, R. Comparison of mRNA-display-based selections using synthetic peptide and natural protein libraries. Biochemistry 46, 10102–10112 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Valencia, C.A., Cotten, S.W., Dong, B. & Liu, R. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study. Biotechnol. Prog. 24, 561–569 (2008).

    Article  PubMed  Google Scholar 

  29. Roberts, R.W. & Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, R., Barrick, J.E., Szostak, J.W. & Roberts, R.W. Optimized synthesis of RNA-protein fusions for in vitro protein selection. Meth. Enzymol. 318, 268–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Nemoto, N., Miyamoto-Sato, E., Husimi, Y. & Yanagawa, H. In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 414, 405–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Hammond, P.W., Alpin, J., Rise, C.E., Wright, M. & Kreider, B.L. In vitro selection and characterization of Bcl-X(L)-binding proteins from a mix of tissue-specific mRNA display libraries. J. Biol. Chem. 276, 20898–20906 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Cujec, T.P., Medeiros, P.F., Hammond, P., Rise, C. & Kreider, B.L. Selection of v-abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display. Chem. Biol. 9, 253–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. McPherson, M., Yang, Y., Hammond, P.W. & Kreider, B.L. Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. Chem. Biol. 9, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Horisawa, K. et al. In vitro selection of Jun-associated proteins using mRNA display. Nucleic Acids. Res. 32, e169 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fukuda, I. et al. In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids. Res. 34, e127 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Josephson, K., Hartman, M.C.T. & Szostak, J.W. Ribosomal synthesis of unnatural peptides. J. Am. Chem. Soc. 127, 11727–11735 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Seelig, B. & Szostak, J.W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson, D.S., Keefe, A.D. & Szostak, J.W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, L. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Olson, C.A., Liao, H., Sun, R. & Roberts, R.W. mRNA display selection of a high-affinity, modification-specific phospho-IkappaBalpha-binding fibronectin. ACS Chem. Biol. 3, 480–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao, H. et al. mRNA display design of fibronectin-based intrabodies that detect and inhibit severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Biol. Chem. 284, 17512–17520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kosugi, S. et al. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J. Biol. Chem. 284, 478–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Austin, R.J., Ja, W.W. & Roberts, R.W. Evolution of class-specific peptides targeting a hot spot of the Galphas subunit. J. Mol. Biol. 377, 1406–1418 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ambion. Retic Lysate IVT Instruction Manual. At 〈http://www.ambion.com/catalog/ProdGrp.html?fkApp=11&fkProdGrp=103〉.

  46. Cho, G., Keefe, A.D., Liu, R., Wilson, D.S. & Szostak, J.W. Constructing high complexity synthetic libraries of long ORFs using in vitro selection. J. Mol. Biol. 297, 309–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kurz, M., Gu, K. & Lohse, P.A. Psoralen photo-crosslinked mRNA-puromycin conjugates: a novel template for the rapid and facile preparation of mRNA-protein fusions. Nucleic Acids. Res. 28, e83 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leemhuis, H., Stein, V., Griffiths, A.D. & Hollfelder, F. New genotype-phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Tabuchi, I. et al. An efficient ligation method in the making of an in vitro virus for in vitro protein evolution. Biol. Proced Online 4, 49–54 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by American Cancer Society Research Scholar Grant RSG-06-073 (to R.L.) and National Institutes of Health Grants NS047650, CA119343 and DA025702 (to R.L.).

Author information

Authors and Affiliations

Authors

Contributions

R.L. designed the experiments and supervised the projects. S.W.C., J.Z., C.A.V. and R.L. conducted the experiments and analyzed the data. S.W.C., J.Z., C.A.V. and R.L. wrote the paper.

Corresponding author

Correspondence to Rihe Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotten, S., Zou, J., Valencia, C. et al. Selection of proteins with desired properties from natural proteome libraries using mRNA display. Nat Protoc 6, 1163–1182 (2011). https://doi.org/10.1038/nprot.2011.354

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.354

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research