Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The one-dimensional Wigner crystal in carbon nanotubes

Abstract

A dilute system of electrons interacting through long-range Coulomb forces has been predicted to form a periodic solid known as a Wigner crystal. To date, this state has been observed directly only in two-dimensional systems. Here, using low-temperature single-electron transport spectroscopy, we show that the hole gas in low-disorder semiconducting carbon nanotubes forms a one-dimensional Wigner crystal. In an axial magnetic field, we observe three distinct regimes of spin and isospin polarization as carrier density is varied. We explain these regimes in terms of a Wigner crystal picture based on a gapped Luttinger liquid model, with the carriers represented by spatially localized solitons. Our observations could enable greater control over the behaviour of the spatially separated system of carriers. Such control, combined with the inherently long coherence times of carriers in carbon nanotubes, could prove useful in the development of solid-state quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental geometry and characteristic transport data.
Figure 2: Transport spectroscopy and magnetic-field evolution of Coulomb peaks.
Figure 3: Energy shift of Coulomb peaks with B and schematic diagram of solitons corresponding to the four combination of spin and isospin.
Figure 4: Kondo effect and flavour configurations.

Similar content being viewed by others

References

  1. Fisher, M. P. A. & Glazman, L. I. Mesoscopic Electron Transport (Kluwer Academic, Boston, 1997).

    Google Scholar 

  2. Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  4. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  ADS  Google Scholar 

  5. Schwartz, A. et al. On-chain electrodynamics of metallic (TMTSF)2X salts: Observation of Tomonaga–Luttinger liquid response. Phys. Rev. B 58, 1261–1271 (1998).

    Article  ADS  Google Scholar 

  6. Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  Google Scholar 

  7. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    Article  ADS  Google Scholar 

  8. Schulz, H. J. Wigner crystal in one dimension. Phys. Rev. Lett. 71, 1864–1867 (1993).

    Article  ADS  Google Scholar 

  9. Matveev, K. A. Conductance of a quantum wire in the Wigner-crystal regime. Phys. Rev. Lett. 92, 106801 (2004).

    Article  ADS  Google Scholar 

  10. Fiete, G. A., Le Hur, K. & Balents, L. Transport in a spin-incoherent Luttinger liquid. Phys. Rev. B 72, 125416 (2005).

    Article  ADS  Google Scholar 

  11. Fogler, M. M. & Pivovarov, E. Exchange interaction in quantum rings and wires in the Wigner-crystal limit. Phys. Rev. B 72, 195344 (2005).

    Article  ADS  Google Scholar 

  12. Kindermann, M., Brouwer, P. W. & Millis, A. J. Interference as a probe of spin incoherence in strongly interacting quantum wires. Phys. Rev. Lett. 97, 036809 (2006).

    Article  ADS  Google Scholar 

  13. Steinberg, H. et al. Localization transition in a ballistic quantum wire. Phys. Rev. B 73, 113307 (2006).

    Article  ADS  Google Scholar 

  14. Yamamoto, M., Stopa, M., Tokura, Y., Hirayama, Y. & Tarucha, S. Negative Coulomb drag in a one-dimensional wire. Science 313, 204–207 (2006).

    Article  ADS  Google Scholar 

  15. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).

    Article  ADS  Google Scholar 

  16. Sapmaz, S. et al. Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005).

    Article  ADS  Google Scholar 

  17. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  ADS  Google Scholar 

  18. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. J. Electron–hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    Article  ADS  Google Scholar 

  19. Minot, E. D., Yaish, Y., Sazonova, V. & McEuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).

    Article  ADS  Google Scholar 

  20. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  ADS  Google Scholar 

  21. Levitov, L. S. & Tsvelik, A. M. Narrow-gap Luttinger liquid in carbon nanotubes. Phys. Rev. Lett. 90, 016401 (2003).

    Article  ADS  Google Scholar 

  22. Novikov, D. S. Electron properties of carbon nanotubes in a periodic potential. Phys. Rev. B 72, 235428 (2005).

    Article  ADS  Google Scholar 

  23. McEuen, P., Bockrath, M., Cobden, D., Yoon, Y.-G. & Louie, S. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  ADS  Google Scholar 

  24. Cobden, D. H., Bockrath, M., McEuen, P. L., Rinzler, A. G. & Smalley, R. E. Spin splitting and even–odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998).

    Article  ADS  Google Scholar 

  25. Matveev, K. A. Conductance of a quantum wire at low electron density. Phys. Rev. B 70, 245319 (2004).

    Article  ADS  Google Scholar 

  26. Klironomos, A. D., Ramazashvili, R. R. & Matveev, K. A. Exchange coupling in a one-dimensional Wigner crystal. Phys. Rev. B 72, 195343 (2005).

    Article  ADS  Google Scholar 

  27. Oreg, Y., Byczuk, K. & Halperin, B. I. Spin configurations of a carbon nanotube in a nonuniform external potential. Phys. Rev. Lett. 85, 365–368 (2000).

    Article  ADS  Google Scholar 

  28. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  ADS  Google Scholar 

  29. Zitko, R., Bonca, J., Ramsak, A. & Rejec, T. Kondo effect in triple quantum dots. Phys. Rev. B 73, 153307 (2006).

    Article  ADS  Google Scholar 

  30. Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

    Article  ADS  Google Scholar 

  31. Sasaki, S. et al. Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 (2000).

    Article  ADS  Google Scholar 

  32. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  ADS  Google Scholar 

  33. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  ADS  Google Scholar 

  34. Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Micro Nano Laboratory at Caltech and Nanotech at UCSB, where fabrication was carried out. We thank C. N. Lau, G. Fiete, G. Refael, R. Barnett, D. Novikov, P. Jarillo-Herrero, C. Marcus, B. Muralidharan and H. Van der Zant for discussions. We acknowledge the support of the Office of Naval Research and the Sloan foundation. We thank an anonymous referee for raising the question concerning the observability of the Kondo effect in our system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bockrath.

Supplementary information

Supplementary Information

Supplementary Discussion and Supplementary Figure 1–3 (PDF 393 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshpande, V., Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys 4, 314–318 (2008). https://doi.org/10.1038/nphys895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing