Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of topological invariants in a 2D photonic system

Abstract

A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary1,2. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk–boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number3. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the set-up used to measure the winding number.
Figure 2: Anomalous spectral flow of edge state resonances.
Figure 3: Local nature of coupled gauge flux and spectral flow for spin-flip excitation.
Figure 4: Absence of spectral flow in a topologically trivial ring geometry.

Similar content being viewed by others

References

  1. Wen, X.-G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

    Google Scholar 

  2. Bernevig, B. & Hughes, T. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  3. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. Miyake, H. et al. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  5. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  6. Spielman, I. B. Detection of topological matter with quantum gases. Ann. Phys. 525, 797–807 (2013).

    Article  MathSciNet  Google Scholar 

  7. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

    Article  ADS  Google Scholar 

  8. Hafezi, M. & Taylor, J. M. Topological physics with light. Phys. Today 67, 68–69 (2014).

    Article  ADS  Google Scholar 

  9. Lu, L. et al. Topological photonics. Nature Photon. 8, 821 (2014).

    Article  ADS  Google Scholar 

  10. Hafezi, M. et al. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  11. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  12. Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  13. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    Article  ADS  Google Scholar 

  14. Kraus, Y. et al. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  Google Scholar 

  15. Hu, W. et al. Measurement of a topological edge invariant in a microwave network. Phys. Rev. X 5, 011012 (2015).

    Google Scholar 

  16. Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article  ADS  Google Scholar 

  17. Umucalılar, R. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    Article  ADS  Google Scholar 

  18. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  19. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    Article  ADS  Google Scholar 

  20. Tzuang, L. D. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nature Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  21. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

    Article  ADS  Google Scholar 

  22. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  23. Ozawa, T. & Carusotto, I. Anomalous and quantum Hall effects in lossy photonic lattices. Phys. Rev. Lett. 112, 133902 (2014).

    Article  ADS  Google Scholar 

  24. Hafezi, M. Measuring topological invariants in photonic systems. Phys. Rev. Lett. 112, 210405 (2014).

    Article  ADS  Google Scholar 

  25. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature. Phys. 9, 795–800 (2014).

    Article  ADS  Google Scholar 

  26. Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    Article  ADS  Google Scholar 

  27. Laughlin, R. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    Article  ADS  Google Scholar 

  28. Halperin, B. I. Quantized Hall conductance, current carrying edge states and extended states in 2D disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  29. Hafezi, M. et al. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    Article  ADS  Google Scholar 

  30. Levkivskyi, I. P. et al. Mach–Zehnder interferometry of fractional quantum Hall edge states. Phys. Rev. B 80, 045319 (2009).

    Article  ADS  Google Scholar 

  31. Ganeshan, S. Quantum Effects in Condensed Matter Systems in Three, Two and One Dimensions PhD thesis, Stony Brook Univ. (2012).

  32. Houck, A. A. et al. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  33. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  34. Kapit, E. et al. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Air Force Office of Scientific Research grant no. FA9550-14-1-0267, Army Research Office, Office of Naval Research, Bethe postdoctoral fellowship, National Science Foundation Career grant, Laboratory for Physical Sciences—Condensed Matter Theory Center, Microsoft and the Physics Frontier Center at the Joint Quantum Institute. We thank M. Levin, A. G. Abanov, A. Lobos, A. Migdall and J. Taylor for fruitful discussions and E. Barnes, M. Davanco and E. Goldschmidt for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and M.H. conceived and designed the experiment. S.M. and J.F. performed the experiment. All authors contributed significantly in analysing the data and editing the manuscript.

Corresponding author

Correspondence to Mohammad Hafezi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4042 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, S., Ganeshan, S., Fan, J. et al. Measurement of topological invariants in a 2D photonic system. Nature Photon 10, 180–183 (2016). https://doi.org/10.1038/nphoton.2016.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.10

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing