Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Octave-spanning semiconductor laser

Abstract

We present a semiconductor injection laser operating in continuous wave with emission covering more than one octave in frequency and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneous quantum cascade structure operating in the terahertz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the milliwatt range and more than 80 modes above threshold. For narrow waveguides, a collapse of the free-running beatnote to linewidths of 980 Hz, limited by jitter, indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based terahertz frequency combs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laser characteristics.
Figure 2: Spectral performance.
Figure 3: Beatnote evolution.
Figure 4: Beatnote analysis.
Figure 5: Dispersion analysis.

Similar content being viewed by others

References

  1. Hua, Z., Scalari, G., Faist, J., Dunbar, L. A. & Houdré, R. Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. J. Appl. Phys. 108, 093104 (2010).

    Article  ADS  Google Scholar 

  2. Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nature Photon. 3, 723–737 (2009).

    Article  ADS  Google Scholar 

  3. Turčinková, D., Amanti, M. I., Castellano, F., Beck, M. & Faist, J. Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition. Appl. Phys. Lett. 102, 181113 (2013).

    Article  ADS  Google Scholar 

  4. Xu, J. et al. Tunable terahertz quantum cascade lasers with an external cavity. Appl. Phys. Lett. 91, 121104 (2007).

    Article  ADS  Google Scholar 

  5. Hugi, A. et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 um. Appl. Phys. Lett. 95, 061103 (2009).

    Article  ADS  Google Scholar 

  6. Riedi, S., Hugi, A., Bismuto, A., Beck, M. & Faist, J. Broadband external cavity tuning in the 3–4 µm window. Appl. Phys. Lett. 103, 031108 (2013).

    Article  ADS  Google Scholar 

  7. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  8. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306–313 (2011).

    Article  ADS  Google Scholar 

  9. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  10. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  11. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    Article  ADS  Google Scholar 

  12. Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    Article  Google Scholar 

  13. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440–449 (2012).

    Article  ADS  Google Scholar 

  14. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  15. Yasui, T. et al. Terahertz frequency metrology based on frequency comb. IEEE J. Sel. Top. Quantum Electron. 17, 191–201 (2011).

    Article  ADS  Google Scholar 

  16. Burghoff, D. et al. Terahertz laser frequency combs. Nature Photon. 8, 462–467 (2014).

    Article  ADS  Google Scholar 

  17. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  18. Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).

    Article  ADS  Google Scholar 

  19. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).

    Article  ADS  Google Scholar 

  20. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).

    Article  ADS  Google Scholar 

  21. Wadsworth, W. et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 19, 2148–2155 (2002).

    Article  ADS  Google Scholar 

  22. Bellini, M. & Hänsch, T. W. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Opt. Lett. 25, 1049–1051 (2000).

    Article  ADS  Google Scholar 

  23. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  24. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (2001).

    Article  ADS  Google Scholar 

  25. Fortier, T. M., Jones, D. J. & Cundiff, S. T. Phase stabilization of an octave-spanning Ti:sapphire laser. Opt. Lett. 28, 2198–2200 (2003).

    Article  ADS  Google Scholar 

  26. Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).

    Article  ADS  Google Scholar 

  27. Amanti, M. et al. Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage. New J. Phys. 11, 125022 (2009).

    Article  ADS  Google Scholar 

  28. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–46 (2009).

    Article  ADS  Google Scholar 

  29. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  30. Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883–887 (2002).

    Article  ADS  Google Scholar 

  31. Freeman, J. R., Marshall, O. P., Beere, H. E. & Ritchie, D. A. Electrically switchable emission in terahertz quantum cascade lasers. Opt. Express 16, 19830 (2008).

    Article  ADS  Google Scholar 

  32. Freeman, J. R. et al. Dual wavelength emission from a terahertz quantum cascade laser. Appl. Phys. Lett. 96, 051120 (2010).

    Article  ADS  Google Scholar 

  33. Khanna, S. P., Salih, M., Dean, P., Davies, A. G. & Linfield, E. H. Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region. Appl. Phys. Lett. 95, 181101 (2009).

    Article  ADS  Google Scholar 

  34. Turčinková, D. et al. Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz. Appl. Phys. Lett. 99, 191104 (2011).

    Article  ADS  Google Scholar 

  35. Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  36. Griffiths, P. R. & de Haset, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (Wiley-Interscience, 2007).

    Book  Google Scholar 

  37. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    Article  ADS  Google Scholar 

  38. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  39. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  40. Fan, W. H. et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy. Appl. Spectrosc. 61, 638–643 (2007).

    Article  ADS  Google Scholar 

  41. Burnett, A. D. et al. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst 134, 1658–1668 (2009).

    Article  ADS  Google Scholar 

  42. Leahy-Hoppa, M., Fitch, M. & Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 395, 247–257 (2009).

    Article  Google Scholar 

  43. Hübers, H.-W., Eichholz, R., Pavlov, S. & Richter, H. High resolution terahertz spectroscopy with quantum cascade lasers. J. Infrared Millim Terahertz Waves 34, 325–341 (2013).

    Article  Google Scholar 

  44. Wang, Y., Soskind, M. G., Wang, W. & Wysocki, G. High-resolution multi-heterodyne spectroscopy based on Fabry–Perot quantum cascade lasers. Appl. Phys. Lett. 104, 031114 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The presented work is part of EU research project TERACOMB (call identifier FP7-ICT-2011-C, project no. 296500). The funding from SNF under the Project 200020_152962 is acknowledged. FIRST lab is also acknowledged. The authors acknowledge discussions with G. Villares, A. Hugi and S. Barbieri. The authors thank C. Bonzon for help with FE simulations. The use of the Schottky detector owned by S. Barbieri is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.R. fabricated the quantum cascade lasers, performed experiments, analysed data, developed the simulations and wrote the paper together with G.S. G.S. designed the quantum cascade lasers, designed and performed experiments, analysed data, developed the simulations and wrote the manuscript together with M.R. M.B. grew the quantum cascade laser material used for this work. J.F. designed the experiments, analysed the data and supervised the work.

Corresponding authors

Correspondence to Markus Rösch or Giacomo Scalari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösch, M., Scalari, G., Beck, M. et al. Octave-spanning semiconductor laser. Nature Photon 9, 42–47 (2015). https://doi.org/10.1038/nphoton.2014.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing