Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-polarizing broadband multilayer reflectors in fish

Subjects

Abstract

Dielectric multilayer reflectors that are non-polarizing are an important class of optical device and have numerous applications within optical fibres1, dielectric waveguides2 and light-emitting diodes3. Here, we report analyses of a biological non-polarizing optical mechanism found in the broadband guanine-cytoplasm ‘silver’ multilayer reflectors of three species of fish. Present in the fish stratum argenteum are two populations of birefringent guanine crystal, with their optical axes either parallel to the long axis of the crystal or perpendicular to the plane of the crystal, respectively. This arrangement neutralizes the polarization of reflection as a result of the different interfacial Brewster's angles of each population. The fish reflective mechanism is distinct from existing non-polarizing mirror designs4,5,6,7 in that, importantly, there is no refractive index contrast between the low-index layers in the reflector and the external environment. This mechanism could be readily manufactured and exploited in synthetic optical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical reflectivity measurements.
Figure 2: Refractive index ratios of guanine crystals.
Figure 3: Optical structure, modelling and parametric fit to experimental data.
Figure 4: A biologically inspired mechanism of polarization-neutral reflection.

Similar content being viewed by others

References

  1. Hart, S. D. et al. External reflection from omnidirectional dielectric mirror fibers. Science 296, 510–513 (2002).

    Article  ADS  Google Scholar 

  2. Yang, S. H., Cooper, M. L., Bandaru, P. R. & Mookherjea, S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Opt. Express 16, 8306–8316 (2008).

    Article  ADS  Google Scholar 

  3. Gessmann, T., Schubert, E. F., Graff, J. W., Streubel, K. & Karnutsch, C. Omnidirectional reflective contacts for light-emitting diodes. IEEE Electron. Dev. Lett. 24, 683–685 (2003).

    Article  ADS  Google Scholar 

  4. Fink, Y. A Dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article  ADS  Google Scholar 

  5. Kaminska, K. & Robbie, K. Birefringent omnidirectional reflector. Appl. Opt. 43, 1–7 (2004).

    Article  Google Scholar 

  6. Han, P. & Wang, H. Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure. J. Opt. Soc. Am. B 22, 1571–1575 (2005).

    Article  ADS  Google Scholar 

  7. Bria, D., Boudouti, E. H. E., Mir, A. & Akjouj, A. Omnidirectional optical mirror in a cladded-superlattice structure. J. Appl. Phys. 91, 2569–2572 (2012).

    Article  ADS  Google Scholar 

  8. Cronin, T., Chiou, T-H., Caldwell, R. & Roberts, N. Polarization signals in mantis shrimps. Proc. SPIE 7461, 74610C (2009).

    Article  Google Scholar 

  9. Jewell, S. A., Vukusic, P. & Roberts, N. W. Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New J. Phys. 9, 99 (2007).

    Article  ADS  Google Scholar 

  10. Land, M. F. & Nilsson, D-E. Animal Eyes, Oxford Animal Biology Series, 1st edn (Oxford Univ. Press, 2002).

    Google Scholar 

  11. Denton, E. J. & Nicol, J. Polarization of light reflected from the silvery exterior of the bleak, Alburnus alburnus. J. Mar. Biol. Assoc. UK 45, 705–709 (1965).

    Article  Google Scholar 

  12. Denton, E. J. & Nicol, J. A. C. Studies on reflexion of light from silvery surfaces of fishes, with special references to the bleak, Alburnus alburnus. J. Mar. Biol. Assoc. UK 45, 683–703 (1965).

    Article  Google Scholar 

  13. Denton, E. J. Review Lecture: On the organization of reflecting surfaces in some marine animals. Phil. Trans. R. Soc. B 258, 285–313 (1970).

    Article  ADS  Google Scholar 

  14. Denton, E. J. & Land, M. F. Mechanism of reflexion in silvery layers of fish and cephalopods. Proc. R. Soc. B 178, 43–61 (1971).

    Article  ADS  Google Scholar 

  15. McKenzie, D. R., Yin, Y. & McFall, W. D. Silvery fish skin as an example of a chaotic reflector. Proc. R. Soc. A 451, 579–584 (1995).

    Article  ADS  Google Scholar 

  16. Zhang, D., Li, Z., Hu, W. & Cheng, B. Broadband optical reflector—an application of light localization in one dimension. Appl. Phys. Lett. 67, 2431–2432 (1995).

    Article  ADS  Google Scholar 

  17. Denton, E. J. & Nicol, J. A. C. Reflexion of light by external surfaces of the herring, Clupea harengus. J. Mar. Biol. Assoc. UK 45, 711–738 (1965).

    Article  Google Scholar 

  18. Rowe, D. M. & Denton, E. J. The physical basis of reflective communication between fish, with special reference to the horse mackerel, Trachurus trachurus. Proc. R. Soc. B 352, 531–549 (1997).

    Google Scholar 

  19. Land, M. F. The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24, 75–106 (1972).

    Article  Google Scholar 

  20. Levy-Lior, A. et al. Guanine-based biogenic photonic-crystal arrays in fish and spiders. Adv. Funct. Mater. 20, 320–329 (2010).

    Article  Google Scholar 

  21. Born, M. & Wolf, E. Principles of Optics 7th edn, 40–49 (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  22. Greenstein, L. Nacreous pigments and their properties. Proc. Sci. Sec. Toilet Goods Assoc. 26, 20–26 (1966).

    Google Scholar 

  23. Levy-Lior, A. et al. Biogenic guanine crystals from the skin of fish may be designed to enhance light reflectance. Cryst. Growth Des. 8, 507–511 (2008).

    Article  Google Scholar 

  24. Berreman, D. 4 × 4 matrix methods. J. Opt. Soc. Am. 62, 502–510 (1972).

    Article  ADS  Google Scholar 

  25. Azzam, R. M. & Bashara, N. M. Ellipsometry and Polarized Light, 269–363 (Elsevier, 1988).

    Google Scholar 

  26. Weber, M. F. Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000).

    Article  ADS  Google Scholar 

  27. Orfanidis, S. Electromagnetic Waves and Antennas; available at http://www.ece.rutgers.edu/orfanidi/ewa/ (accessed September 2012)

  28. Vukusic, P. & Sambles, R. J. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  ADS  Google Scholar 

  29. Roberts, N. W., Chiou, T-H., Marshall, N. J. & Cronin, T. W. A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nature Photon. 3, 641–644 (2009).

    Article  ADS  Google Scholar 

  30. Jen, Y-J. et al. Biologically inspired achromatic waveplates for visible light. Nature Commun. 2, 363 (2011).

    Article  ADS  Google Scholar 

  31. Roberts, N. W., Porter, M. L. & Cronin, T. W. The molecular basis of mechanisms underlying polarization vision. Phil. Trans. R. Soc. B 366, 27–37 (2011).

    Google Scholar 

  32. Temple, S. E. et al. High-resolution polarization vision in a cuttlefish. Curr. Biol. 22, R121–R122 (2012).

    Article  Google Scholar 

  33. Cronin, T. & Shashar, N. The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J. Exp. Biol. 204, 2461–2467 (2001).

    Google Scholar 

  34. Mäthger, L. M., Denton, E. J., Marshall, N. J. & Hanlon, R. T. Mechanisms and behavioural functions of structural coloration in cephalopods. J. R. Soc. Interface 6 (suppl 2), S149–S163 (2009).

    Article  Google Scholar 

  35. Dacke, M., Nilsson, D., Warrant, E. J., Blest, A. D. & Land, M. F. Built-in polarizers form part of a compass organ in spiders. Nature 401, 470–473 (1999).

    Article  ADS  Google Scholar 

  36. Colomb, T. et al. Polarization imaging by use of digital holography. Appl. Opt. 41, 27–37 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Biotechnology and Biological Sciences Research Council (NWR – grant no. BB/G022917/1 and BB/H01635X/1), the Engineering and Physical Sciences Research Council (TMJ – grant no. EP/E501214/1) and the Air Force Office of Scientific Research (NWR – grant no. FA-9550-09-1-0149). The authors thank J. McGregor and S.E. Temple for valuable discussions and I.C. Cuthill for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Contributions

J.C.P. initiated the study. T.M.J and N.W.R. performed the modelling and experiments. All authors interpreted the data and co-authored the paper.

Corresponding author

Correspondence to N. W. Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, T., Partridge, J. & Roberts, N. Non-polarizing broadband multilayer reflectors in fish. Nature Photon 6, 759–763 (2012). https://doi.org/10.1038/nphoton.2012.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing