Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical lattice clocks and quantum metrology

Abstract

The 'magic wavelength' protocol has made it possible to design atomic clocks based on well-engineered perturbations. Such 'optical lattice clocks' will allow extremely high stability using a large number of atoms and fractional uncertainties of 10−18 by sharing particular 'magic' wavelengths. This Review covers the experimental realizations of such clocks, the optimal design of optical lattices and recent demonstrations of improved stability for large numbers of atoms. Possible impacts and future applications of optical lattice clocks are also discussed, such as testing the fundamental laws of physics and developing relativistic geodesy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical clock operation.
Figure 2: An optical lattice clock.
Figure 3: Light shift and relevant energy levels of Sr atoms.
Figure 4: Optical lattice configurations.
Figure 5: Spectroscopy in optical lattices.
Figure 6: Frequency comparisons of 1D and 3D clocks.

Similar content being viewed by others

References

  1. Diddams, S., Bergquist, J., Jefferts, S. & Oates, C. Standards of time and frequency at the outset of the 21st century. Science 306, 1318–1324 (2004).

    Article  ADS  Google Scholar 

  2. Hänsch, T. W. Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  3. Hall, J. L. Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  4. Flowers, J. The route to atomic and quantum standards. Science 306, 1324–1330 (2004).

    Article  ADS  Google Scholar 

  5. Schiller, S. et al. Einstein Gravity Explorer — a medium-class fundamental physics mission. Exp. Astron. 23, 573–610 (2009).

    Article  ADS  Google Scholar 

  6. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  ADS  Google Scholar 

  7. Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).

    Article  ADS  Google Scholar 

  8. Essen, L. & Parry, J. The caesium resonator as a standard of frequency and time. Phil. Trans. R. Soc. A 250, 45–69 (1957).

    Article  ADS  Google Scholar 

  9. Heavner, T. P., Jefferts, S. R., Donley, E. A., Shirley, J. H. & Parker, T. E. NIST-F1: Recent improvements and accuracy evaluations. Metrologia 42, 411–422 (2005).

    Article  ADS  Google Scholar 

  10. Bize, S. et al. Cold atom clocks and applications. J. Phys. B 38, S449–S468 (2005).

    Article  Google Scholar 

  11. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    Article  ADS  Google Scholar 

  12. Gill, P. Optical frequency standards. Metrologia 42, S125–S137 (2005).

    Article  ADS  Google Scholar 

  13. Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. IM-31, 83–87 (1982).

    Article  ADS  Google Scholar 

  14. Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  Google Scholar 

  15. Hänsch, T. W. & Schawlow, A. L. Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975).

    Article  ADS  Google Scholar 

  16. Wineland, D. & Itano, W. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  17. Udem, T., Reichert, J., Holzwarth, R. & Hänsch, T. W. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).

    Article  ADS  Google Scholar 

  18. Jones, D. J. et al. Carrier–envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  19. Jones, T. Splitting the Second: The Story of Atomic Time (Taylor & Francis, 2000).

    Book  Google Scholar 

  20. Itano, W. M. et al. Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  21. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    Article  ADS  Google Scholar 

  22. Itano, W. M. External-field shifts of the 199Hg+ optical frequency standard. J. Res. Natl Inst. Stand. Technol. 105 829–837 (2000).

    Article  Google Scholar 

  23. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    Article  ADS  Google Scholar 

  24. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks: Metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  25. Tamm, C., Weyers, S., Lipphardt, B. & Peik, E. Stray-field-induced quadrupole shift and absolute frequency of the 688-THz 171Yb+ single-ion optical frequency standard. Phys. Rev. A 80, 043403 (2009).

    Article  ADS  Google Scholar 

  26. Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J. & Rosenband, T. Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  27. Katori, H. Spectroscopy of strontium atoms in the Lamb–Dicke confinement, in Proc. 6th Symp. on Frequency Standards and Metrology (ed. Gill, P.) 323–330 (World Scientific, 2002).

    Chapter  Google Scholar 

  28. Verkerk, P. et al. Dynamics and spatial order of cold cesium atoms in a periodic optical potential. Phys. Rev. Lett. 68, 3861–3864 (1992).

    Article  ADS  Google Scholar 

  29. Hemmerich, A. & Hänsch, T. W. Two-dimesional atomic crystal bound by light. Phys. Rev. Lett. 70, 410–413 (1993).

    Article  ADS  Google Scholar 

  30. Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  31. Katori, H., Ido, T. & Kuwata-Gonokami, M. Optimal design of dipole potentials for efficient loading of Sr atoms. J. Phys. Soc. Jpn. 68, 2479–2482 (1999).

    Article  ADS  Google Scholar 

  32. McKeever, J. et al. State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003).

    Article  ADS  Google Scholar 

  33. Ye, J., Kimble, H. J. & Katori, H. Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

    Article  ADS  Google Scholar 

  34. Westbrook, C. I. et al. Localization of atoms in a three-dimensional standing wave. Phys. Rev. Lett. 65, 33–36 (1990).

    Article  ADS  Google Scholar 

  35. Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).

    Article  ADS  Google Scholar 

  36. Cohen-Tannoudji, C. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    Article  ADS  Google Scholar 

  37. Chu, S., Bjorkholm, J., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314–317 (1986).

    Article  ADS  Google Scholar 

  38. Kaplan, A., Fredslund Andersen, M. & Davidson, N. Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms. Phys. Rev. A 66, 045401 (2002).

    Article  ADS  Google Scholar 

  39. Katori, H., Takamoto, M., Pal'chikov, V. G. & Ovsiannikov, V. D. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91, 173005 (2003).

    Article  ADS  Google Scholar 

  40. Porsev, S. G., Derevianko, A. & Fortson, E. N. Possibility of an optical clock using the 61S0–63P0 transition in 171,173Yb atoms held in an optical lattice. Phys. Rev. A 69, 021403 (2004).

    Article  ADS  Google Scholar 

  41. Brusch, A., Le Targat, R., Baillard, X., Fouch, M. & Lemonde, P. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96, 103003 (2006).

    Article  ADS  Google Scholar 

  42. Barber, Z. W. et al. Optical lattice induced light shifts in an Yb atomic clock. Phys. Rev. Lett. 100, 103002 (2008).

    Article  ADS  Google Scholar 

  43. Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).

    Article  ADS  Google Scholar 

  44. Ido, T. & Katori, H. Recoil-free spectroscopy of neutral Sr atoms in the Lamb–Dick regime. Phys. Rev. Lett. 91, 053001 (2003).

    Article  ADS  Google Scholar 

  45. Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    Article  ADS  Google Scholar 

  46. Ovsiannikov, V. D. et al. Magic-wave-induced 1S0–3P0 transition in even isotopes of alkaline-earth-metal-like atoms. Phys. Rev. A 75, 020501 (2007).

    Article  ADS  Google Scholar 

  47. Hong, T., Cramer, C., Nagourney, W. & Fortson, E. N. Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms. Phys. Rev. Lett. 94, 050801 (2005).

    Article  ADS  Google Scholar 

  48. Santra, R., Arimondo, E., Ido, T., Greene, C. H. & Ye, J. High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr. Phys. Rev. Lett. 94, 173002 (2005).

    Article  ADS  Google Scholar 

  49. Yu, D. & Chen, J. Optical clock with millihertz linewidth based on a phase-matching effect. Phys. Rev. Lett. 98, 050801 (2007).

    Article  ADS  Google Scholar 

  50. Ovsiannikov, V. D., Pal'chikov, V. G., Katori, H. & Takamoto, M. Polarisation and dispersion properties of light shifts in ultrastable optical frequency standards. Quant. Electron. 36, 3–19 (2006).

    Article  ADS  Google Scholar 

  51. Degenhardt, C., Stoehr, H., Sterr, U., Riehle, F. & Lisdat, C. Wavelength-dependent ac Stark shift of the 1S0–3P1 transition at 657nm in Ca. Phys. Rev. A 70, 23414 (2004).

    Article  ADS  Google Scholar 

  52. Ye, A. & Wang, G. Dipole polarizabilities of ns2S0 and nsnp3P0 states and relevant magic wavelengths of group-IIB atoms. Phys. Rev. A 78, 014502 (2008).

    Article  ADS  Google Scholar 

  53. Petersen, M. et al. Doppler-free spectroscopy of the 1S0–3P0 optical clock transition in laser-cooled Fermionic isotopes of neutral mercury. Phys. Rev. Lett. 101, 183004 (2008).

    Article  ADS  Google Scholar 

  54. Taichenachev, A. V., Yudin, V. I., Ovsiannikov, V. D., Pal'chikov, V. G. & Oates, C. W. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions. Phys. Rev. Lett. 101, 193601 (2008).

    Article  ADS  Google Scholar 

  55. Katori, H., Hashiguchi, K., Il'inova, E. Y. & Ovsiannikov, V. D. Magic wavelength to make optical lattice clocks insensitive to atomic motion. Phys. Rev. Lett. 103, 153004 (2009).

    Article  ADS  Google Scholar 

  56. Porsev, S. G. & Derevianko, A. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks. Phys. Rev. A 74, 020502 (2006).

    Article  ADS  Google Scholar 

  57. Safronova, M. S. et al. Black-body radiation shifts and theoretical contributions to atomic clock research. IEEE Trans. Ultrason. Ferr. 57, 94–105 (2010).

    Article  Google Scholar 

  58. Taichenachev, A. V., Yudin, V. I., Ovsiannikov, V. D. & Pal'chikov, V. G. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions. Phys. Rev. Lett. 97, 173601 (2006).

    Article  ADS  Google Scholar 

  59. Castin, Y. & Dalibard, J. Quantization of atomic motion in optical molasses. Europhys. Lett. 14, 761–766 (1991).

    Article  ADS  Google Scholar 

  60. Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A 72, 033409 (2005).

    Article  ADS  Google Scholar 

  61. Lemonde, P. Optical lattice clocks. Eur. Phys. J. Spec. Top. 172, 81–96 (2009).

    Article  Google Scholar 

  62. Takamoto, M., Katori, H., Marmo, S. I., Ovsiannikov, V. D. & Pal'chikov, V. G. Prospects for optical clocks with a blue-detuned lattice. Phys. Rev. Lett. 102, 063002 (2009).

    Article  ADS  Google Scholar 

  63. Gibble, K. & Verhaar, B. J. Eliminating cold-collision frequency shifts. Phys. Rev. A 52, 3370–3373 (1995).

    Article  ADS  Google Scholar 

  64. Gibble, K. Decoherence and collisional frequency shifts of trapped bosons and fermions. Phys. Rev. Lett. 103, 113202 (2009).

    Article  ADS  Google Scholar 

  65. Gupta, S. et al. Radio-frequency spectroscopy of ultracold fermions. Science 300, 1723–1726 (2003).

    Article  ADS  Google Scholar 

  66. Akatsuka, T., Takamoto, M. & Katori, H. Optical lattice clocks with non-interacting bosons and fermions. Nature Phys. 4, 954–959 (2008).

    Article  ADS  Google Scholar 

  67. Takamoto, M. & Katori, H. Coherence of spin-polarized fermions interacting with a clock laser in a Stark-shift-free optical lattice. J. Phys. Soc. Jpn. 78, 013301 (2009).

    Article  ADS  Google Scholar 

  68. Takamoto, M. et al. Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope. J. Phys. Soc. Jpn. 75, 104302 (2006).

    Article  ADS  Google Scholar 

  69. Bernard, J. E., Marmet, L. & Madej, A. A. A laser frequency lock referenced to a single trapped ion. Opt. Commun. 150, 170–174 (1998).

    Article  ADS  Google Scholar 

  70. Baillard, X. et al. Accuracy evaluation of an optical lattice clock with bosonic atoms. Opt. Lett. 32, 1812–1814 (2007).

    Article  ADS  Google Scholar 

  71. Lisdat, C., Winfred, J., Middelmann, T., Riehle, F. & Sterr, U. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. Phys. Rev. Lett. 103, 090801 (2009).

    Article  ADS  Google Scholar 

  72. Courtillot, I. et al. Clock transition for a future optical frequency standard with trapped atoms. Phys. Rev. A 68, 30501 (2003).

    Article  ADS  Google Scholar 

  73. Takamoto, M. & Katori, H. Spectroscopy of the 1S0–3P0 clock transition of 87Sr in an optical lattice. Phys. Rev. Lett. 91, 223001 (2003).

    Article  ADS  Google Scholar 

  74. Takamoto, M., Hong, F. L., Higashi, R. & Katori, H. An optical lattice clock. Nature 435, 321–324 (2005).

    Article  ADS  Google Scholar 

  75. Ludlow, A. D. et al. Systematic study of the 87Sr clock transition in an optical lattice. Phys. Rev. Lett. 96, 033003 (2006).

    Article  ADS  Google Scholar 

  76. Le Targat, R. et al. Accurate optical lattice clock with 87Sr atoms. Phys. Rev. Lett. 97, 130801 (2006).

    Article  ADS  Google Scholar 

  77. Campbell, G. K. et al. The absolute frequency of the 87Sr optical clock transition. Metrologia 45, 539–548 (2008).

    Article  ADS  Google Scholar 

  78. Baillard, X. et al. An optical lattice clock with spin-polarized 87Sr atoms. Eur. Phys. J. D 48, 11–17 (2008).

    Article  ADS  Google Scholar 

  79. Hong, F. L. et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. Opt. Lett. 34, 692–694 (2009).

    Article  ADS  Google Scholar 

  80. Lemke, N. D. et al. Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103, 063001 (2009).

    Article  ADS  Google Scholar 

  81. Kohno, T. et al. One-dimensional optical lattice clock with a fermionic 171Yb isotope. Appl. Phys. Exp. 2, 072501 (2009).

    Article  ADS  Google Scholar 

  82. Campbell, G. K. et al. Probing interactions between ultracold fermions. Science 324, 360–363 (2009).

    Article  ADS  Google Scholar 

  83. Beloy, K. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks. Phys. Rev. A 82, 031402 (2010).

    Article  ADS  Google Scholar 

  84. Ludlow, A. D. et al. Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  85. Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferr. 45, 887–894 (1998).

    Article  Google Scholar 

  86. Quessada, A. et al. The Dick effect for an optical frequency standard. J. Opt. B 5, S150–S154 (2003).

    Article  Google Scholar 

  87. Numata, K., Kemery, A. & Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93, 250602 (2004).

    Article  ADS  Google Scholar 

  88. Bize, S. et al. Interrogation oscillator noise rejection in the comparison of atomic fountains. IEEE Trans. Ultrason. Ferr. 47, 1253–1255 (2000).

    Article  Google Scholar 

  89. Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nature Photon. (in the press).

  90. Allan, D. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans. Ultrason. Ferr. 34, 647–654 (1987).

    Article  Google Scholar 

  91. Akatsuka, T., Takamoto, M. & Katori, H. Three-dimensional optical lattice clock with bosonic 88Sr atoms. Phys. Rev. A 81, 023402 (2010).

    Article  ADS  Google Scholar 

  92. Santarelli, G. et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999).

    Article  ADS  Google Scholar 

  93. Jiang, Y. et al. Making optical atomic clocks more stable with 10−16 level laser stabilization. Preprint at http://arxiv.org/abs/1101.1351 (2011).

  94. Kimble, H. J., Lev, B. L. & Ye, J. Optical interferometers with reduced sensitivity to thermal noise. Phys. Rev. Lett. 101, 260602 (2008).

    Article  ADS  Google Scholar 

  95. Seel, S. et al. Cryogenic optical resonators: A new tool for laser frequency stabilization at the 1 Hz Level. Phys. Rev. Lett. 78, 4741–4744 (1997).

    Article  ADS  Google Scholar 

  96. Meiser, D., Ye, J., Carlson, D. R. & Holland, M. J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 102, 163601 (2009).

    Article  ADS  Google Scholar 

  97. Lodewyck, J., Westergaard, P. G. & Lemonde, P. Nondestructive measurement of the transition probability in a Sr optical lattice clock. Phys. Rev. A 79, 061401 (2009).

    Article  ADS  Google Scholar 

  98. Uzan, J.-P. The fundamental constants and their variation: Observational and theoretical status. Rev. Mod. Phys. 75, 403–455 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. Peik, E. et al. Limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett. 93, 170801 (2004).

    Article  ADS  Google Scholar 

  100. Blatt, S. et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett. 100, 140801 (2008).

    Article  ADS  Google Scholar 

  101. Fortier, T. M. et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. Phys. Rev. Lett. 98, 070801 (2007).

    Article  ADS  Google Scholar 

  102. Angstmann, E. J., Dzuba, V. A. & Flambaum, V. V. Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant. Phys. Rev. A 70, 014102 (2004).

    Article  ADS  Google Scholar 

  103. Bauch, A. & Weyers, S. New experimental limit on the validity of local position invariance. Phys. Rev. D 65, 081101 (2002).

    Article  ADS  Google Scholar 

  104. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  105. Newbury, N. R., Williams, P. A. & Swann, W. C. Coherent transfer of an optical carrier over 251 km. Opt. Lett. 32, 3056–3058 (2007).

    Article  ADS  Google Scholar 

  106. Bjerhammar, A. On a relativistic geodesy. J. Geod. 59, 207–220 (1985).

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks M. Takamoto and T. Takano for useful discussions and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, H. Optical lattice clocks and quantum metrology. Nature Photon 5, 203–210 (2011). https://doi.org/10.1038/nphoton.2011.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing