Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray pump optical probe cross-correlation study of GaAs

Abstract

Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure1,2,3. New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron lasers4,5. These source improvements also allow for the reverse measurement: X-ray pump followed by optical probe. We describe here how an X-ray pump beam transforms a thin GaAs specimen from a strong absorber into a nearly transparent window in less than 100 ps, for laser photon energies just above the bandgap. We find the opposite effect—X-ray induced optical opacity—for photon energies just below the bandgap. This raises interesting questions about the ultrafast many-body response of semiconductors to X-ray absorption, and provides a new approach for an X-ray/optical cross-correlator for synchrotron and X-ray free-electron laser applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission at 860 nm versus time after X-ray pump pulse.
Figure 2: Model for X-ray-induced transmission and absorption.
Figure 3: Absorption factor (μ(λ)L = −ln(T)) versus time delay.
Figure 4: Transmission at 890 nm from 1 × 10−11 to 1 × 10−4 s.

Similar content being viewed by others

References

  1. Bostedt, C. et al. Experiments at FLASH. Nuclear Instruments & Methods in Physics Research Section A—Accelerators Spectrometers Detectors and Associated Equipment 601, 108–122 (2009).

    Article  ADS  Google Scholar 

  2. Glownia, J. M. et al. Time-resolved pump–probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    Article  ADS  Google Scholar 

  3. Bressler, C. & Chergui, M. Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 61, 263–282 (2010).

    Article  Google Scholar 

  4. McNeil, B. W. J. & Thompson, N. R. X-ray free-electron lasers. Nature Photon. 4, 814–821 (2010).

    Article  ADS  Google Scholar 

  5. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  6. Kraessig, B. et al. A simple cross-correlation technique between infrared and hard X-ray pulses. Appl. Phys. Lett. 94, 171113 (2009).

    Article  ADS  Google Scholar 

  7. Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008).

    Article  ADS  Google Scholar 

  8. Ziaja, B., London, R. A. & Hajdu, J. Ionization by impact electrons in solids: electron mean free path fitted over a wide energy range. J. Appl. Phys. 99, 033514 (2006).

    Article  ADS  Google Scholar 

  9. Schafer, W. & Wegener, M. Semiconductor Optics and Transport Phenomena, Advanced Texts in Physics (Springer, 2002).

  10. Mcguire, E. J. Atomic L-shell Coster–Kronig, Auger, and radiative rates and fluorescence yields for Na-Th. Phys. Rev. A 3, 587–594 (1971).

    Article  ADS  Google Scholar 

  11. Moss, T. S. The interpretation of the properties of indium antimonide. Proc. Phys. Soc. London B 67, 775–782 (1954).

    Article  ADS  Google Scholar 

  12. Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954).

    Article  ADS  Google Scholar 

  13. Van Mieghem, P. Theory of band tails in heavily doped semiconductors. Rev. Mod. Phys. 64, 755–793 (1992).

    Article  ADS  Google Scholar 

  14. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley-Interscience, 2007).

  15. Liebler, J. & Haug, H. Theory of the band-tail absorption saturation in polar semiconductors. Phys. Rev. B 41, 5843–5856 (1990).

    Article  ADS  Google Scholar 

  16. Oudar, J. L., Hulin, D., Migus, A., Antonetti, A. & Alexandre, F. Subpicosecond spectral hole burning due to non-thermalized photoexcited carriers in gaas. Phys. Rev. Lett. 55, 2074–2077 (1985).

    Article  ADS  Google Scholar 

  17. Schoenlein, R. W., Lin, W. Z., Ippen, E. P. & Fujimoto, J. G. Femtosecond hot-carrier energy relaxation in GaAs. Appl. Phys. Lett. 51, 1442–1444 (1987).

    Article  ADS  Google Scholar 

  18. Nunnenkamp, J., Collet, J. H., Klebniczki, J., Kuhl, J. & Ploog, K. Subpicosecond kinetics of band-edge absorption in Al0.25Ga0.75As. Phys. Rev. B 43, 14047–14054 (1991).

    Article  ADS  Google Scholar 

  19. Chang, Y. M. & Chang, N. A. Coherent longitudinal optical phonon and plasmon coupling in GaAs. Appl. Phys. Lett. 81, 3771–3773 (2002).

    Article  ADS  Google Scholar 

  20. Rupper, G., Kwong, N. H. & Binder, R. Large excitonic enhancement of optical refrigeration in semiconductors. Phys. Rev. Lett. 97, 117401 (2006).

    Article  ADS  Google Scholar 

  21. Khurgin, J. B. Role of bandtail states in laser cooling of semiconductors. Phys. Rev. B 77, 235206 (2008).

    Article  ADS  Google Scholar 

  22. Sturge, M. D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys. Rev. 127, 768–773 (1962).

    Article  ADS  Google Scholar 

  23. Banyai, L. & Koch, S. W. A simple theory for the effects of plasma screening on the optical-spectra of highly excited semiconductors. Zeitschrift Fur Physik B 63, 283–291 (1986).

    Article  ADS  Google Scholar 

  24. Grilli, E., Guzzi, M., Zamboni, R. & Pavesi, L. High-precision determination of the temperature-dependence of the fundamental energy-gap in gallium-arsenide. Phys. Rev. B 45, 1638–1644 (1992).

    Article  ADS  Google Scholar 

  25. Passler, R. Dispersion-related description of temperature dependencies of band gaps in semiconductors. Phys. Rev. B 66, 085201 (2002).

    Article  ADS  Google Scholar 

  26. Trigo, M. et al. Imaging nonequilibrium atomic vibrations with X-ray diffuse scattering. Phys. Rev. B 82, 235205 (2010).

    Article  ADS  Google Scholar 

  27. Graber, T. et al. BioCARS: a synchrotron resource for time-resolved X-ray science. J. Synch. Rad. 18, 658–670 (2011).

    Article  Google Scholar 

  28. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions—photoabsorption, scattering, transmission, and reflection at e = 50–30,000 eV, z = 1–92. Atomic Data and Nuclear Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Science (award no. DE-SC0004078). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science (contract no. DE-AC02-06CH11357). Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources (grant no. RR007707). The time-resolved set-up at Sector 14 was funded in part through a collaboration with Philip Anfinrud (NIH/NIDDK).

Author information

Authors and Affiliations

Authors

Contributions

All four authors were substantially involved with acquiring the data. S.M.D. analysed the results and wrote the manuscript, with assistance from T.G.

Corresponding author

Correspondence to S. M. Durbin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durbin, S., Clevenger, T., Graber, T. et al. X-ray pump optical probe cross-correlation study of GaAs. Nature Photon 6, 111–114 (2012). https://doi.org/10.1038/nphoton.2011.327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing