Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles

Subjects

Abstract

Most of the light in conventional organic light-emitting diodes is confined to high-refractive-index layers (such as an organic medium, indium tin oxide and glass substrate) resulting in a low light extraction efficiency of 20% (refs 1,2). Many studies have used wavelength-scale periodic gratings to increase the external efficiency of organic light-emitting diodes3,4,5,6,7,8,9. However, the efficiency is only enhanced at particular wavelengths satisfying the Bragg condition. Here, we demonstrate that a quasi-periodic buckling structure with broad distribution and directional randomness can enhance the light extraction efficiency without introducing spectral changes and directionality. Organic light-emitting diodes corrugated by buckles showed improved current and power efficiencies and an electroluminescence spectrum enhanced by at least a factor of two across the entire visible wavelength regime. These buckling patterns are formed spontaneously on elastic materials with a thin metallic film. The buckled organic light-emitting diode devices are practical and attractive for use in fabricating full colour and white organic light-emitting diodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM analysis of buckling patterns.
Figure 2: Characterization of waveguide modes by the transfer matrix method.
Figure 3: Device performance.
Figure 4: Electroluminescence spectral characteristics.

Similar content being viewed by others

References

  1. Madigan, C. F., Lu, M. H. & Sturm, J. C. Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification. Appl. Phys. Lett. 76, 1650–1652 (2000).

    Article  ADS  Google Scholar 

  2. Chutinan, A., Ishihara, K., Asano, T., Fujita, M. & Noda, S. Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Org. Elect. 6, 3–9 (2005).

    Article  Google Scholar 

  3. Fujita, M. et al. Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers. Jpn J. Appl. Phys. 44, 3669–3677 (2005).

    Article  ADS  Google Scholar 

  4. Ziebarth, J. M., Saafir, A. K., Fan, S. & McGehee, M. D. Extracting light from polymer light-emitting diodes using stamped Bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).

    Article  Google Scholar 

  5. Matterson, B. J. et al. Increased efficiency and controlled light output from a microstructured light-emitting diode. Adv. Mater. 13, 123–127 (2001).

    Article  Google Scholar 

  6. Hobson, P. A., Wasey, J. A. E., Sage, I. & Barnes, W. L. The role of surface plasmons in organic light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 8, 378–385 (2002).

    Article  ADS  Google Scholar 

  7. Jeong, S. M. et al. Enhancement of normally-directed light outcoupling from organic light-emitting diodes using nano-imprinted low-refractive-index layer. Appl. Phys. Lett. 92, 083307 (2008).

    Article  ADS  Google Scholar 

  8. Jeong, S. M. et al. Enhancement of light extraction from organic light-emitting diodes with two-dimensional hexagonally nano-imprinted periodic structures using sequential surface relief grating. Jpn J. Appl. Phys. 47, 4566–4571 (2008).

    Article  ADS  Google Scholar 

  9. Ishihara, K. et al. Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography. Appl. Phys. Lett. 90, 111114 (2007).

    Article  ADS  Google Scholar 

  10. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  ADS  Google Scholar 

  11. Sun, J. & Forrest, S. R. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. J. Appl. Phys. 100, 073106 (2006).

    Article  ADS  Google Scholar 

  12. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  ADS  Google Scholar 

  13. Sun, J. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photon. 2, 483–487 (2008).

    Article  Google Scholar 

  14. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  ADS  Google Scholar 

  15. Okayasu, T., Zhang, H. L., Bucknall, D. G. & Briggs, G. A. Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Func. Mater. 14, 1081–1088 (2004).

    Article  Google Scholar 

  16. Huck, W. T. S. et al. Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 3497–3501 (2000).

    Article  Google Scholar 

  17. Allen, H. G. Analysis and Design of Structural Sandwich Panels (Pergamon, 1969).

    Google Scholar 

  18. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  19. Bowden, N., Huck, W. T. S., Paul, K. E. & Whitesides, G. M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557–2259 (1999).

    Article  ADS  Google Scholar 

  20. Chilwell, J. & Hodgkinson, I. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A 7, 742–753 (1984).

    Article  ADS  Google Scholar 

  21. Yeh, P. Optical Waves in Layered Media (Wiley, 1988).

    Google Scholar 

  22. Fuhrmann, T., Samse, K., Salbeck, J., Perschke, A. & Franke, H. Guided electromagnetic waves in organic light emitting diode structures. Org. Electron. 4, 219–226 (2003).

    Article  Google Scholar 

  23. Ziebarth, J. M. & McGehee, M. D. A theoretical and experimental investigation of light extraction from polymer light-emitting diodes. J. Appl. Phys. 97, 064502 (2001).

    Article  ADS  Google Scholar 

  24. Fujita, M. et al. Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure. Appl. Phys. Lett. 85, 5769–5771 (2004).

    Article  ADS  Google Scholar 

  25. Burrows, P. E. et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 79, 7991–8006 (1996).

    Article  ADS  Google Scholar 

  26. Kalinowski, J., Palilis, L. C., Kim, W. H. & Kafafi, Z. H. Determination of the width of the carrier recombination zone in organic light-emitting diodes. J. Appl. Phys. 94, 7764–7767 (2003).

    Article  ADS  Google Scholar 

  27. Tang, C. W., VanSlyke, S. A. & Chen, C. H. Electroluminescence of doped organic thin films. J. Appl. Phys. 85, 3610–3616 (1989).

    Article  ADS  Google Scholar 

  28. Kim, K. S. et al. Large-scale pattern growth of grapheme films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

W.H.K. performed most experiments, including fabrication of the OLED devices (with and without buckling) and characterization, with assistance from S.M.J., F.A. and K.I. Suggestions on the characterization of data were made by S.N. and T.T. H.T. and W.H.K. wrote the manuscript.

Corresponding author

Correspondence to Hideo Takezoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, W., Jeong, S., Araoka, F. et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nature Photon 4, 222–226 (2010). https://doi.org/10.1038/nphoton.2010.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing