Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy

Abstract

Non-resonant emitter–cavity coupling is a fascinating effect recently observed as unexpected pronounced cavity resonance emission even in strongly detuned single quantum dot–microcavity systems1,2,3. This phenomenon indicates strong, complex light–matter interactions in these solid-state systems, and has major implications for single-photon sources4,5,6 and quantum information applications1,2,3,7,9. We study non-resonant dot–cavity coupling of individual quantum dots in micropillars under resonant excitation, revealing a pronounced effect over positive and negative quantum dot mode detunings. Our results suggest a dominant role of phonon-mediated dephasing in dot–cavity coupling, giving a new perspective to the controversial discussions ongoing in the literature. Such enhanced insight is essential for various cavity-based quantum electrodynamic systems using emitters that experience phonon coupling, such as colour centres in diamond10 and colloidal nanocrystals11. Non-resonant coupling is demonstrated to be a versatile ‘monitoring’ tool for observing relevant quantum dot s-shell emission properties and background-free photon statistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photon statistics of a non-resonantly coupled quantum dot (QD)–micropillar cavity system.
Figure 2: ΔE(T) dependence of the relative mode emission intensity under non-resonant quantum dot (QD)–mode coupling.
Figure 3: Quantum dot (QD) s-shell resonance scans at different quantum dot–mode detunings ΔE.
Figure 4: ‘Monitoring’ the s-shell emission characteristics of a single quantum dot through a detuned micropillar mode.

Similar content being viewed by others

References

  1. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  2. Press, D. et al. Photon antibunching from a single quantum-dot–microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007).

    Article  ADS  Google Scholar 

  3. Badolato, A., Winger, M., Hennessy, K. J., Hu, E. & Imamoglu, A. Cavity QED effects with single quantum dots. C. R. Physique 9, 850–856 (2008).

    Article  ADS  Google Scholar 

  4. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  5. Kiraz, A., Atatüre, M. & Imamogˇlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Article  ADS  Google Scholar 

  6. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  7. Bouwmeester, D., Ekert, A. & Zeilinger, A. The Physics of Quantum Information — Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, 2000).

    MATH  Google Scholar 

  8. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  9. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  10. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    Article  ADS  Google Scholar 

  11. Le Thomas, N. et al. Cavity QED with semiconductor nanocrystals. Nano Lett. 6, 557–561 (2006).

    Article  ADS  Google Scholar 

  12. Santori, C., Fattal, D., Vucković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  13. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  14. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  ADS  Google Scholar 

  15. Kaniber, M. et al. Investigation of the nonresonant dot–cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303(R) (2008).

    Article  ADS  Google Scholar 

  16. Naesby, A., Suhr, T., Kristensen, P. T. & Mørk, J. Influensce of pure dephasing on emission spectra from single photon sources. Phys. Rev. A 78, 045802 (2008).

    Article  ADS  Google Scholar 

  17. Yamaguchi, M., Asano, T. & Noda, S. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express 16, 18067–18081 (2008).

    Article  ADS  Google Scholar 

  18. Auffèves, A., Ge´rard, J.-M. & Poizat, J.-P. Pure emitter dephasing: a resource for advanced solid-state single-photon sources. Phys. Rev. A 79, 053838 (2009).

    Article  ADS  Google Scholar 

  19. Tarel, G. & Savona, V. Emission spectrum of a quantum dot embedded in a nanocavity. Phys. Status Solidi 6, 902–905 (2009).

    Article  Google Scholar 

  20. Tawara, T. et al. Cavity mode emission in weakly coupled quantum dot–cavity systems. Opt. Express 17, 6643–6654 (2009).

    Article  ADS  Google Scholar 

  21. Michler, P. et al. Quantum correlation among photons from a single quntum dot at room temperature. Nature 406, 968–970 (2000).

    Article  ADS  Google Scholar 

  22. Suffczynski, J. et al. Origin of the optical emission within the cavity mode of coupled quantum dot–cavity systems. Phys. Rev. Lett. 103, 027401 (2009).

    Article  ADS  Google Scholar 

  23. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  24. Stufler, S., Ester, P., Zrenner, A. & Bichler, M. Power broadening of the exciton linewidth in a single InGaAs/GaAs quantum dot. Appl. Phys. Lett. 85, 4202–4204 (2004).

    Article  ADS  Google Scholar 

  25. Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Phys. 5, 203–207 (2009).

    Article  ADS  Google Scholar 

  26. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the DFG research groups FOR 730 ‘Positioning of Single Nanostructures—Single Quantum Devices’ and FOR 485 ‘Quantum Optics in Semiconductor Nanostructures’. We also thank M. Emmerling and A. Wolf for expert sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

S.R., A.L., S.H. and A.F. fabricated the sample structure. S.A., S.M.U., A.U. and P.M. conceived the experiments. S.A., S.M.U. and A.U. performed the experiments and analysed the data. S.A., S.M.U. and P.M. wrote the article, with input from the other authors.

Corresponding author

Correspondence to S. M. Ulrich.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, S., Ulrich, S., Ulhaq, A. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photon 3, 724–728 (2009). https://doi.org/10.1038/nphoton.2009.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing