Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low-threshold continuous-wave Raman silicon laser

Abstract

We report the first demonstration of a low-threshold continuous-wave (c.w.) Raman silicon laser based on a ring-resonator-cavity configuration. We achieved a lasing threshold of 20 mW, slope efficiency of 28% and an output power of 50 mW, with a 25 V reverse bias applied to the p-i-n silicon waveguides. This represents nearly a tenfold improvement in the lasing threshold and more than a fivefold improvement in both slope efficiency and output power over previous results. In addition, we demonstrate for the first time c.w. lasing with zero bias voltage. In this arrangement, the laser does not require an external electrical power supply, and we obtained a lasing threshold of 26 mW and laser output power exceeding 10 mW. The realization of low-threshold lasing and lasing with no external bias is a major advance towards producing practical silicon lasers based on stimulated Raman scattering, for applications ranging from telecommunications and interconnects to optical sensing and biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ring-cavity configuration and waveguide cross-section.
Figure 2: Free-carrier lifetime measurements.
Figure 3: Schematic set-up of the silicon ring laser experiment.
Figure 4: Laser output power as a function of the coupled pump power for 3-cm cavities.
Figure 5: Raman silicon laser spectrum.
Figure 6: Laser output power as a function of the coupled input pump power for a 1.5-cm ring laser cavity with different reverse biases.

References

  1. Reed, G. T. The optical age of silicon. Nature 427, 595–596 (2004).

    Article  ADS  Google Scholar 

  2. Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (Wiley, Chichester, 2004).

    Book  Google Scholar 

  3. Pavesi, L. & Lockwood, D. J. (eds) Silicon Photonics (Springer, Berlin/Heidelberg/New York, 2004).

    Google Scholar 

  4. Pavesi, L. & Guillot, G. (eds) Optical Interconnects—The Silicon Approach (Springer, Berlin/Heidelberg/New York, 2006).

    Book  Google Scholar 

  5. Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M. & Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093–1095 (2004).

    Article  ADS  Google Scholar 

  6. Schmidt, B., Almeida, V., Manolatou, C., Preble, S. & Lipson, M. Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. Appl. Phys. Lett. 85, 4854–4856 (2004).

    Article  ADS  Google Scholar 

  7. Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004).

    Article  ADS  Google Scholar 

  8. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J. & Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007).

    Article  ADS  Google Scholar 

  9. Liu, A. et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007).

    Article  ADS  Google Scholar 

  10. Liu, J. et al. High performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

    Article  ADS  Google Scholar 

  11. Morse, M., Dosunmu, O., Sarid, G. & Chetrit, Y. Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules. IEEE Photon. Technol. Lett. 18, 2442–2444 (2006).

    Article  ADS  Google Scholar 

  12. Rong, H., Kuo, Y.-H., Liu, A., Cohen, O. & Paniccia, M. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188 (2006).

    Article  ADS  Google Scholar 

  13. Yamada, K. et al. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048 (2006).

    Article  ADS  Google Scholar 

  14. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  15. Kuo, Y.-H. et al. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt. Express 14, 11721–11726 (2006).

    Article  ADS  Google Scholar 

  16. Pavesi, L., Gaponenko, S. & Dal Negro, L. (eds). Towards the First Silicon Laser, NATO Science Series (Kluwer, Dordrecht, 2003).

    Book  Google Scholar 

  17. Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4267 (2004).

    Article  ADS  Google Scholar 

  18. Xu, Q., Almeida, V. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004).

    Article  ADS  Google Scholar 

  19. Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004).

    Article  ADS  Google Scholar 

  20. Boyraz, O. & Jalali, B. Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier. IEICE Elect. Express 1, 429–434 (2004).

    Article  Google Scholar 

  21. Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005).

    Article  ADS  Google Scholar 

  22. Chen, X., Panoiu, N. C. & Osgood, R. M. Jr. Theory of Raman-mediated pulsed amplification in silicon-wire waveguides. IEEE J. Quant. Electron. 42, 160–170 (2006).

    Article  ADS  Google Scholar 

  23. Liu, Y. & Tsang, H. K. Nonlinear absorption and Raman gain in helium ion implanted silicon. Opt. Lett. 31, 1714–1716 (2006).

    Article  ADS  Google Scholar 

  24. Fathpour, S., Tsia, K. K. & Jalali, B. Energy harvesting in silicon Raman amplifiers. Appl. Phys. Lett. 89, 061109 (2006).

  25. Sih, V. et al. Raman amplification of 40 Gb/s data in low-loss silicon waveguides. Opt. Express 15, 357–362 (2007).

    Article  ADS  Google Scholar 

  26. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  27. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  28. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  29. Liu, A. et al. Optical amplification and lasing by stimulated Raman scattering in silicon waveguides. J. Lightwave Technol. 24, 1440–1455 (2006).

    Article  ADS  Google Scholar 

  30. Rong, H. et al. Monolithic integrated Raman silicon laser. Opt. Express 14, 6705–6712 (2006).

    Article  ADS  Google Scholar 

  31. Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004).

    Article  ADS  Google Scholar 

  32. Rong, H. et al. Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004).

    Article  ADS  Google Scholar 

  33. Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Role of nonlinear absorption on Raman amplification in silicon waveguides. Opt. Express 12, 2774–2780 (2004).

    Article  ADS  Google Scholar 

  34. Headley, W. R., Reed, G. T., Howe, S., Liu, A. & Paniccia, M. Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Appl. Phys. Lett. 85, 5523–5525 (2004).

    Article  ADS  Google Scholar 

  35. Adar, R. et al. Measurement of very low-loss silica on silicon waveguides with a ring resonator. Appl. Phys. Lett. 58, 444–445 (1991).

    Article  ADS  Google Scholar 

  36. Soref, R. A. & Lorenzo, P. J. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. QE-22, 873–879 (1986).

    Article  ADS  Google Scholar 

  37. Baney, D. M. & Sorin, W. V. in Fiber Optic Test and Measurement 169–219 (ed. Derickson, D.) (Prentice-Hall, Englewood Cliffs, 1998).

    Google Scholar 

  38. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. QE-18, 259–264 (1982).

    Article  ADS  Google Scholar 

  39. Naeini, J. G. & Ahmad, K. Raman fiber laser with two parallel couplers. Opt. Eng. 44, 064203 1–4 (2005).

    Article  Google Scholar 

  40. Kippenberg, T. J., Spillane, S. M., Min, B. & Vahala, K. J. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quant. Electron. 10, 1219–1228 (2004).

    Article  ADS  Google Scholar 

  41. Krause, M., Draheim, R., Renner H. & Brinkmeyer, E. Cascaded silicon Raman lasers as mid-infrared sources. Electron. Lett. 42, 1224–1226 (2006).

    Article  Google Scholar 

  42. Vermeulen, N., Debaes, C. & Thienpont, H. Modeling mid-infrared continuous-wave silicon-based Raman lasers. Proc. SPIE Photonics West, Paper [6455-23], San Jose, 2007.

    Google Scholar 

  43. Sorokina, I. T. & Vodopyanov, K. L. (eds) Solid-State Mid-Infrared Laser Sources (Springer, Berlin/Heidelberg, 2003).

    Book  Google Scholar 

Download references

Acknowledgements

We thank A. Liu, R. Jones, G. T. Reed and J. E. Bowers for helpful discussions and N. Izhaky, A. Alduino, D. Tran, K. Callegari, J. C. Jimenez, N. Ziharev and J. Ngo for assistance in device fabrication and sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Rong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rong, H., Xu, S., Kuo, YH. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon 1, 232–237 (2007). https://doi.org/10.1038/nphoton.2007.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing