Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy

Abstract

Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T′) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of 25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymorphic integration of few-layer 1T′/2H MoTe2 crystals within the same atomic planes by sequential lateral heteroepitaxy.
Figure 2: Atomic-scale crystal and electronic structures of 2H and 1T′-MoTe2 polymorphs.
Figure 3: Electrical properties of the coplanar 1T′/2H MoTe2 polymorph transistor.
Figure 4: Multi-terminal 1T′/2H-MoTe2 polymorphic FETs.
Figure 5: Comparison of the polymorphic 1T′-coplanar and Au-top contacts to 2H-MoTe2 atomic layers.
Figure 6: Synthetic integration of 2H-WSe2/1T′-WTe2 polymorph films in large areas.

Similar content being viewed by others

References

  1. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcongenide nanosheet. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  2. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S . & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nat. Nanotech. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  3. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  4. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2 . Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  5. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts two-dimensional semiconductor. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  6. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  7. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  8. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627 (2012).

    Article  CAS  Google Scholar 

  9. Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride template by graphene edge. Science 343, 163–167 (2014).

    Article  CAS  Google Scholar 

  10. Huang, C. et al. Lateral heterojunction within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  CAS  Google Scholar 

  11. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayer. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  12. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotech. 9, 1024–1030 (2014).

    Article  CAS  Google Scholar 

  13. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  14. Heo, H. et al. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27, 3803–3810 (2015).

    Article  CAS  Google Scholar 

  15. Revolinsky, E. & Beerntsen, D. J. Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature. J. Phys. Chem. Solid 27, 523–526 (1966).

    Article  CAS  Google Scholar 

  16. Vellinga, M. B., Jonge, R. de & Haas, C. Semiconductor to metal transition in MoTe2 . J. Solid State Chem. 2, 299–302 (1970).

    Article  CAS  Google Scholar 

  17. Hughes, H. P. & Friend, R. H. Electrical resistivity anomaly in β-MoTe2 . J. Phys. C 11, L103–L105 (1978).

    Article  CAS  Google Scholar 

  18. Albert, M., Kershaw, R., Dwight, K. & Wold, A. Preparation and characterization of semiconducting α-MoTe2 single crystals. Solid State Commun. 81, 649–651 (1992).

    Article  CAS  Google Scholar 

  19. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2 . Nat. Phys. 11, 482–487 (2015).

    Article  CAS  Google Scholar 

  20. Park, J. C. et al. Phase-engineered synthesis of centimeter-scale 1Tʹ- and 2H-molybdenum ditelluride thin films. ACS Nano 9, 6548–6554 (2015).

    Article  CAS  Google Scholar 

  21. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2 . J. Am. Chem. Soc. 137, 11892–11895 (2015).

    Article  CAS  Google Scholar 

  22. Naylor, C. H. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapour deposition exhibits a weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

    Article  CAS  Google Scholar 

  23. Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  CAS  Google Scholar 

  24. Ahn, J.-H. et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 15, 3703–3708 (2015).

    Article  CAS  Google Scholar 

  25. Sung, J. H. et al. Atomic layer-by-layer thermoelectric conversion in topological insulator bismuth/antimony tellurides. Nano Lett. 14, 4030–4035 (2014).

    Article  CAS  Google Scholar 

  26. Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    Article  CAS  Google Scholar 

  27. Kan, M., Nam, H. G., Lee, Y. H. & Sun, Q. Phase stability and Raman vibration of molybdenum ditelluride (MoTe2) monolayer. Phys. Chem. Chem. Phys. 17, 14866–14871 (2015).

    Article  CAS  Google Scholar 

  28. Brown, B. E. The crystal structures of WTe2 and high-temperature MoTe2 . Acta Crystallogr. 20, 268–274 (1966).

    Article  CAS  Google Scholar 

  29. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 7, 7311–7317 (2012).

    Article  Google Scholar 

  30. Puotinen, D. & Newnham, R. E. The crystal structure of MoTe2 . Acta Crystallogr. 14, 691–692 (1961).

    Article  CAS  Google Scholar 

  31. Hla, S. W., Marinković, V., Prodan, A. & Muševič, I. STM/AFM investigations of β-MoTe2, α-MoTe2 and WTe2 . Surf. Sci. 352, 105–111 (1996).

    Article  Google Scholar 

  32. Saidi, A., Hasbach, A., Raberg, W. & Wandelt, K. Atomic force microscopy and scanning tunneling microscopy/spectroscopy investigations of molybdenum ditellurides. J. Vac. Sci. Technol. A 16, 951–955 (1998).

    Article  CAS  Google Scholar 

  33. Grant, A. J., Griffiths, T. M., Pitt, G. D. & Yoffe, A. D. The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals. J. Phys. C 8, L17 (1975).

    Article  CAS  Google Scholar 

  34. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

    Article  CAS  Google Scholar 

  36. Lu, C.-P., Li, G., Mao, J., Wang, L.-M. & Andrei, E.-Y. Bandgap, mid-gap states, and gating effects in MoS2 . Nano Lett. 14, 4628–4633 (2014).

    Article  CAS  Google Scholar 

  37. Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Article  Google Scholar 

  38. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  Google Scholar 

  39. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  40. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructures device platform. Nat. Nanotech. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  41. Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    Article  Google Scholar 

  42. Sanches, O. L., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotech. 8, 497–501 (2013).

    Article  Google Scholar 

  43. Das, S., Chen, H.-Y., Penumatch, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  CAS  Google Scholar 

  44. Radisavlijevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).

    Article  Google Scholar 

  45. Lin, Y.-F. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26, 3263–3269 (2014).

    Article  CAS  Google Scholar 

  46. Fathipour, S. et al. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 105, 192101 (2014).

    Article  Google Scholar 

  47. Yu, H., Kutana, A. & Yakobson, B. I. Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016).

    Article  CAS  Google Scholar 

  48. Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, Ph. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article  Google Scholar 

  49. Kuhn, K. J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59, 1813–1828 (2012).

    Article  CAS  Google Scholar 

  50. Zhou, J. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mater. 29, 1603471 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS), Korea, under project code IBS-R014-A1. J.S.K. was also supported by the NRF through the SRC Center for Topological Matter (grant no. 2011-0030046) and the Max Planck POSTECH/KOREA Research Initiative Program (grant no. 2011-0031558).

Author information

Authors and Affiliations

Authors

Contributions

M.-H.J. and H.H. conceived and designed the project. S.S., H.H. and C.-S.L. synthesized MoTe2 polymorphs and carried out the AFM and Raman scattering characterizations. J.H.S., Y.H.K., J.K., S.-Y.S. and D.-H.K. performed device fabrication and electrical characterization. H.R.N., H.K.K. and H.W.Y. performed STM measurements. K.S. and S.-Y.C. acquired STEM images and analysed the data. M.-H.J., J.S.K., T.-H.K., S.-Y.C., J.H.S. and H.H. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Moon-Ho Jo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J., Heo, H., Si, S. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nature Nanotech 12, 1064–1070 (2017). https://doi.org/10.1038/nnano.2017.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing