Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

Subjects

Abstract

A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the aptamer-anchor structure on nanotube.
Figure 2: Calibration of nanosensor response to recombinant protein.
Figure 3: Detection of protein from crude cell lysate and from E. coli engineered to secrete target protein.
Figure 4: Imaging the secretion of single proteins from individual microorganisms.
Figure 5: Real-time monitoring of bacteriophage T7RAP1 infection of E. coli cells and resulting cell lysis.

Similar content being viewed by others

References

  1. Keasling, J. D. Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 14, 189–195 (2012).

    Article  CAS  Google Scholar 

  2. Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5, 310–320 (2006).

    Article  CAS  Google Scholar 

  3. Chikkaveeraiah, B. V., Bhirde, A. A., Morgan, N. Y., Eden, H. S. & Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6, 6546–6561 (2012).

    Article  CAS  Google Scholar 

  4. Kurita, R., Arai, K., Nakamoto, K., Kato, D. & Niwa, O. Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection. Anal. Chem. 82, 1692–1697 (2010).

    Article  CAS  Google Scholar 

  5. Hammock, M. L., Knopfmacher, O., Naab, B. D., Tok, J. B. H. & Bao, Z. A. Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors. ACS Nano 7, 3970–3980 (2013).

    Article  CAS  Google Scholar 

  6. Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).

    Article  CAS  Google Scholar 

  7. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  Google Scholar 

  8. Mogalisetti, P. & Walt, D. R. Stoichiometry of the α-complementation reaction of Escherichia coil β-galactosidase as revealed through single-molecule studies. Biochemistry 54, 1583–1588 (2015).

    Article  CAS  Google Scholar 

  9. Beyene, A. G., Demirer, G. D. & Landry, M. P. Nanoparticle-templated molecular recognition platforms for detection of biological analytes. Curr. Protoc. Chem. Biol. 8, 197–223 (2016).

    Article  Google Scholar 

  10. Salem, D. P. et al. Chirality dependent corona phase molecular recognition of DNA-wrapped carbon nanotubes. Carbon 97, 147–153 (2016).

    Article  CAS  Google Scholar 

  11. Roxbury, D., Mittal, J. & Jagota, A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett. 12, 1464–1469 (2012).

    Article  CAS  Google Scholar 

  12. Tu, X. M., Manohar, S., Jagota, A. & Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009).

    Article  CAS  Google Scholar 

  13. Bisker, G. et al.. Protein-targeted corona phase molecular recognition. Nat. Commun. 7, 10241 (2016).

    Article  CAS  Google Scholar 

  14. Nelson, J. T. et al. Mechanism of immobilized protein a binding to immunoglobulin G on nanosensor array surfaces. Anal. Chem. 87, 8186–8193 (2015).

    Article  CAS  Google Scholar 

  15. Oliveira, S. F. et al. Protein functionalized carbon nanomaterials for biomedical applications. Carbon 95, 767–779 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, J. Q. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotech. 8, 959–968 (2013).

    Article  CAS  Google Scholar 

  17. Yang, R. et al. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J. Am. Chem. Soc. 130, 8351–8358 (2008).

    Article  CAS  Google Scholar 

  18. Kruss, S. et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136, 713–724 (2014).

    Article  CAS  Google Scholar 

  19. Callura, J. M., Cantor, C. R. & Collins, J. J. Genetic switchboard for synthetic biology applications. Proc. Natl Acad. Sci. USA 109, 5850–5855 (2012).

    Article  CAS  Google Scholar 

  20. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    Article  CAS  Google Scholar 

  21. Ellis, E. L. & Delbruck, M. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939).

    Article  CAS  Google Scholar 

  22. Nguyen, H. M. & Kang, C. Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes. J. Virol. 88, 2107–2115 (2014).

    Article  Google Scholar 

  23. Taleat, Z., Cristea, C., Marrazza, G., Mazloum-Ardakani, M. & Sandulescu, R. Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J. Electroanal. Chem. 717, 119–124 (2014).

    Article  Google Scholar 

  24. Jacobs, C. B., Peairs, M. J. & Venton, B. J. Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010).

    Article  CAS  Google Scholar 

  25. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  Google Scholar 

  26. Shi, T. et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc. Natl Acad. Sci. USA 109, 15395–15400 (2012).

    Article  CAS  Google Scholar 

  27. Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotech. 7, 379–382 (2012).

    Article  CAS  Google Scholar 

  28. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  29. Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Sonnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    Article  CAS  Google Scholar 

  30. Qian, X. M. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  31. Sakabe, M. et al. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J. Am. Chem. Soc. 135, 409–414 (2013).

    Article  CAS  Google Scholar 

  32. Paulus, G. L. C. et al. A graphene-based physiometer array for the analysis of single biological cells. Sci. Rep. 4, 6865 (2014).

    Article  CAS  Google Scholar 

  33. Yang, X., Gu, C., Qian, F., Li, Y. & Zhang, J. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced raman scattering and optical fibers. Anal. Chem. 83, 5888–5894 (2011).

    Article  CAS  Google Scholar 

  34. Landry, M. P. et al. Comparative dynamics and sequence dependence of DNA and RNA binding to single walled carbon nanotubes. J. Phys. Chem. C 119, 10048–10058 (2015).

    Article  CAS  Google Scholar 

  35. Giraldo, J. P. et al.. A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 11, 3973–3984 (2015).

    Article  CAS  Google Scholar 

  36. Roxbury, D., Mittal, J. & Jagota, A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett. 12, 1464–1469 (2012).

    Article  CAS  Google Scholar 

  37. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  38. Lahav, G. et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), the Simons Foundation, a BBRF young investigator award and a Beckman Foundation Young Investigator Award (to M.P.L.). M.S.S. acknowledges a grant from the National Science Foundation (NSF) to support this work. H.A. is supported by fellowships from the Japan Society for the Promotion of Science and the Naito Foundation. D.Y. acknowledges support from an NSF GRFP fellowship and L.C. acknowledges support from a LAM research fellowship. A.Y.C. acknowledges graduate research support from the Hertz Foundation, the Department of Defense and NIH Medical Scientist Training Program grant T32GM007753. This work was also supported by the National Institutes of Health (DP2 OD008435 and P50 GM098792), the Office of Naval Research (N00014-13-1-0424) and the NSF (MCB-1350625). The authors thank P. Perez-Pinera (University of Illinois Urbana-Champaign) for providing the parental Pichia cells.

Author information

Authors and Affiliations

Authors

Contributions

M.P.L. and M.S.S. conceived of the aptamer-anchor nanosensor platform and designed experiments. M.P.L. synthesized aptamer–nanotube conjugates, performed protein selectivity screens and carried out in vitro and cell-based experiments with J.D. and analysed data. H.A., A.C., J.C. and V.I.K. constructed recombinant E. coli strains, H.A. constructed T7RAP1 bacteriophage. M.P.L., H.A., A.C., V.I.K., L.C., D.Y., T.K.L. and M.S.S. discussed the experimental results and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, M., Ando, H., Chen, A. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nature Nanotech 12, 368–377 (2017). https://doi.org/10.1038/nnano.2016.284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing