Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large anelasticity and associated energy dissipation in single-crystalline nanowires

Subjects

Abstract

Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to dissipation of internal mechanical energy1. As a consequence, anelastic materials are being investigated for mechanical damping applications. At the macroscopic scale, however, anelasticity is usually very small or negligible, especially in single-crystalline materials2,3. Here, we show that single-crystalline ZnO and p-doped Si nanowires can exhibit anelastic behaviour that is up to four orders of magnitude larger than the largest anelasticity observed in bulk materials, with a timescale on the order of minutes. In situ scanning electron microscope tests of individual nanowires showed that, on removal of the bending load and instantaneous recovery of the elastic strain, a substantial portion of the total strain gradually recovers with time. We attribute this large anelasticity to stress-gradient-induced migration of point defects, as supported by electron energy loss spectroscopy measurements and also by the fact that no anelastic behaviour could be observed under tension. We model this behaviour through a theoretical framework by point defect diffusion under a high strain gradient and short diffusion distance, expanding the classic Gorsky theory. Finally, we show that ZnO single-crystalline nanowires exhibit a high damping merit index, suggesting that crystalline nanowires with point defects are promising materials for energy damping applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ SEM bending test of an individual ZnO nanowire.
Figure 2: Recovery and damping behaviours of a ZnO nanowire.
Figure 3: Microstructure and relationship between oxygen difference and bending strain for a ZnO nanowire.
Figure 4: Mechanical behaviour of p-doped Si nanowires under bending and compression.

Similar content being viewed by others

References

  1. Lakes, R. Viscoelastic Material (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  2. Zener, C. Elasticity and Anelasticity of Metals (Univ. Chicago Press, 1948).

    Google Scholar 

  3. Nowick, A. S. & Berry, B. S. Anelastic Relaxation in Crystalline Solids (Academic, 1972).

    Google Scholar 

  4. Wang, Z. L. & Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    Article  CAS  Google Scholar 

  5. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  6. McAlpine, M. C. et al. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531–1535 (2003).

    Article  CAS  Google Scholar 

  7. Xu, F., Lu, W. & Zhu, Y. Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5, 672–678 (2011).

    Article  CAS  Google Scholar 

  8. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  CAS  Google Scholar 

  9. Feng, X. L., He, R., Yang, P. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    Article  CAS  Google Scholar 

  10. Park, H. S., Cai, W., Espinosa, H. D. & Huang, H. Mechanics of crystalline nanowires. MRS Bull. 34, 178–183 (2009).

    Article  CAS  Google Scholar 

  11. Richter, G. et al. Ultra high strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

    Article  CAS  Google Scholar 

  12. Zhu, Y., Xu, F., Qin, Q. Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009).

    Article  CAS  Google Scholar 

  13. Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. & Yan, Y. J. Size dependence of the Young's modulus of ZnO nanowires. Phys. Rev. Lett. 96, 75505 (2006).

    Article  CAS  Google Scholar 

  14. Wu, B., Heidelberg, A. & Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Mater. 4, 525–529 (2005).

    Article  CAS  Google Scholar 

  15. Chen, B. et al. Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 13, 3169–3172 (2013).

    Article  CAS  Google Scholar 

  16. Qin, Q. et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nature Commun. 6, 5983 (2015).

    Article  CAS  Google Scholar 

  17. Zhu, Y. & Espinosa, H. D. An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl Acad. Sci. USA 102, 14503–14508 (2005).

    Article  CAS  Google Scholar 

  18. Chang, T. H. & Zhu, Y. A microelectromechanical system for thermomechanical testing of nanostructures. Appl. Phys. Lett. 103, 263114 (2013).

    Article  Google Scholar 

  19. Xu, F., Qin, Q. Q., Mishra, A., Gu, Y. & Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 3, 271–280 (2010).

    Article  CAS  Google Scholar 

  20. Lifshitz, R. & Roukes, M. L. Themoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000).

    Article  CAS  Google Scholar 

  21. Schaumann, G., Völki, J. & Alefeld, G. The diffusion coefficients of hydrogen and deuterium in vanadium, niobium, and tantalum by Gorsky-effect measurements. Phys. Status Solidi 42, 401–413 (1970).

    Article  CAS  Google Scholar 

  22. Schaumann, G., Völkl, J. & Alefeld, G. Relaxation process due to long-range diffusion of hydrogen and deuterium in niobium. Phys. Rev. Lett. 21, 891–893 (1968).

    Article  CAS  Google Scholar 

  23. McCluskey, M. D. & Jokela, S. J. Defects in ZnO. J. Appl. Phys. 106, 071101 (2009).

    Article  Google Scholar 

  24. Zhang, X., Kulik, J. & Dickey, E. C. Diffusion in SixGe1−x/Si nanowire heterostructures. J. Nanosci. Nanotechnol. 7, 717–720 (2007).

    Article  CAS  Google Scholar 

  25. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  26. Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

  27. Ashby, M. F. Materials Selection in Mechanical Design (Butterworth-Heinemann, 2010).

    Google Scholar 

  28. San Juan, J., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nature Nanotech. 4, 415–419 (2009).

    Article  CAS  Google Scholar 

  29. Perea, D. E. et al. Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nature Nanotech. 4, 315–319 (2009).

    Article  CAS  Google Scholar 

  30. Wang, X. et al. Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates. J. Am. Chem. Soc. 127, 7920–7923 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.Z. acknowledges support from the National Science Foundation (NSF) under awards CMMI-1030637 and 1301193, and the use of the Analytical Instrumentation Facility at North Carolina State University, which is supported by the State of North Carolina and the NSF. H.G. acknowledges support from the NSF through award CMMI-1161749 and the MRSEC Program through award DMR-0520651 at Brown University. C.M. acknowledges a scholarship from the China Scholarship Council (no. 2011683006). Y.Z. thanks Y. Gu and W. Lu for providing nanowire samples and for discussions about the defect structures in these nanowires.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived the idea. Y.Z. and H.G. designed the experiments and modelling. G.C., Q.Q. and F.X. performed the in situ mechanical testing. J.L., G.C. and E.C.D. performed EELS characterization. C.M. and H.H. performed the modelling and simulations. G.C., C.M., E.C.D., H.G. and Y.Z. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Huajian Gao or Yong Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 972 kb)

Supplementary Movie 1

Supplementary Movie 1 (WMV 8041 kb)

Supplementary Movie 2

Supplementary Movie 2 (WMV 5986 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Miao, C., Qin, Q. et al. Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nature Nanotech 10, 687–691 (2015). https://doi.org/10.1038/nnano.2015.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing