Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrically pumped waveguide lasing from ZnO nanowires

Abstract

Ultraviolet semiconductor lasers are widely used for applications in photonics, information storage, biology and medical therapeutics. Although the performance of gallium nitride ultraviolet lasers has improved significantly over the past decade, demand for lower costs, higher powers and shorter wavelengths has motivated interest in zinc oxide (ZnO), which has a wide direct bandgap and a large exciton binding energy1,2,3,4,5,6. ZnO-based random lasing has been demonstrated with both optical and electrical pumping7,8,9,10, but random lasers suffer from reduced output powers, unstable emission spectra and beam divergence. Here, we demonstrate electrically pumped Fabry–Perot type waveguide lasing from laser diodes that consist of Sb-doped p-type ZnO nanowires and n-type ZnO thin films. The diodes exhibit highly stable lasing at room temperature, and can be modelled with finite-difference time-domain methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and material properties of the ZnO nanowire/film laser device.
Figure 2: IV properties and evidence of the formation of a ZnO nanowire/film p-n junction.
Figure 3: Laser emission characterizations.
Figure 4: Lasing threshold gain/feedback properties.
Figure 5: Far-field pattern of light emission.

References

  1. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  2. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  3. Vugt, L. K. V., Rühle, S. & Vanmaekelbergh, D. Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. Nano Lett. 6, 2707–2711 (2006).

    Article  Google Scholar 

  4. Zhou, H. et al. Ordered, uniform-sized ZnO nanolasers arrays. Appl. Phys. Lett. 91, 181112 (2007).

    Article  Google Scholar 

  5. Kwok, W. M. et al. Influence of annealing on stimulated emission in ZnO nanorods. Appl. Phys. Lett. 89, 183112 (2006).

    Article  Google Scholar 

  6. Gargast, D. et al. Whispering gallery mode lasing from ZnO hexagonal nanodisks. ACS Nano 4, 3270–3276 (2010).

    Article  Google Scholar 

  7. Ma, X. Y. et al. Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Opt. Express 17, 14426–14433 (2009).

    Article  CAS  Google Scholar 

  8. Liang, H. K., Yu, S. F. & Yang, H. Y. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Appl. Phys. Lett. 96, 101116 (2010).

    Article  Google Scholar 

  9. Zhu, H. et al. Low threshold electrically pumped random lasers. Adv. Mater. 22, 1877–1881 (2010).

    Article  CAS  Google Scholar 

  10. Chu, S., Olmedo, M., Kong, J. Y., Yang, Z. & Liu, J. L. Electrically pumped ultraviolet ZnO laser diode. Appl. Phys. Lett. 93, 181106 (2008).

    Article  Google Scholar 

  11. Duan, X. F., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    Article  CAS  Google Scholar 

  12. Lu, M. P. et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009).

    Article  CAS  Google Scholar 

  13. Tsukazaki, A. et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Mater. 4, 42–46 (2005).

    Article  CAS  Google Scholar 

  14. Chen, M. et al. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387–4393 (2010).

    Article  CAS  Google Scholar 

  15. Wang, G. et al. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Appl. Phys. Lett. 98, 041107 (2011).

    Article  Google Scholar 

  16. Greence, L. E. et al. General route to vertical ZnO nanowire arrays using texured ZnO seeds. Nano Lett. 5, 1231–1236 (2005).

    Article  Google Scholar 

  17. Wu, Y. W., Yeh, C. C. & Ting, J. M. Effects of seed layer characteristics on the synthesis of ZnO nanowires, J. Am. Ceram. Soc. 92, 2718–2723 (2009).

    Article  CAS  Google Scholar 

  18. Izquierdo, R., Sacher, E. & Yelon, A. X-ray photoelectron spectra of antimony oxides. Appl. Surf. Sci. 40, 175–177 (1989).

    Article  CAS  Google Scholar 

  19. Klingshirn, C., Hauschild, R., Fallert, J. & Kalt, H. Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing. Phys. Rev. B 75, 115203 (2007).

    Article  Google Scholar 

  20. Hauschild, R., Priller, H., Decker, M., Kalt, H. & Klingshirn, C. The exciton polariton model and the diffusion of excitons in ZnO analyzed by time-dependent photoluminescence spectroscopy. Phys. Status Solidi C 3, 980–983 (2006).

    Article  CAS  Google Scholar 

  21. Reynolds, D. C. et al. Time-resolved photoluminescence lifetime measurements of the Γ5 and Γ6 free excitons in ZnO. J. Appl. Phys. 88, 2152–2153 (2000).

    Article  CAS  Google Scholar 

  22. Lopatiuk-Tirpak, O. et al. Studies of minority carrier diffusion length increase in p-type ZnO:Sb. J. Appl. Phys. 100, 086101 (2006).

    Article  Google Scholar 

  23. Hoffmann, S. et al. Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341–1344 (2009).

    Article  CAS  Google Scholar 

  24. Chernyak, L. et al. Electron beam induced current profiling of ZnO p-n homojunctions. Appl. Phys. Lett. 92, 102106 (2008).

    Article  Google Scholar 

  25. Salfi, J., Philipose, U., Aouba, S., Nair, S. V. & Ruda, H. E. Electron transport in degenerate Mn-doped ZnO nanowires. Appl. Phys. Lett. 90, 032104 (2007).

    Article  Google Scholar 

  26. Johnson, J. C., Yan, H. Q., Yang, P. D. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    Article  CAS  Google Scholar 

  27. Soudi, A., Dhakal, P. & Gu, Y. Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires. Appl. Phys. Lett. 96, 253115 (2010).

    Article  Google Scholar 

  28. Versteegh, M. A. M., Kuis, T., Stoof, H. T. C. & Dijkhuis, J. I. Ultrafast screening and carrier dynamics in ZnO: theory and experiment. Preprint at http://arXiv.org/abs/1012.3600 (2010).

  29. Friedler, I. et al. Solid state single photon sources: the nanowire antenna. Opt. Express 17, 2095–2110 (2009).

    Article  CAS  Google Scholar 

  30. Zimmler, M. A., Bao, J., Capasso, F., Muller, S. & Ronning, C. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K.N. Bozhilov for assistance in TEM imaging, Z.H. Chen for guidance in optical pumping measurements and D. Paul for AES measurement and analysis. The work on the ZnO device was in part supported by Army Research Office Young Investigator Program (grant no. W911NF-08-1-0432) and by the National Science Foundation (grant no. ECCS-0900978). The work on p-type ZnO was supported by the Department of Energy (DE-FG02-08ER46520).

Author information

Authors and Affiliations

Authors

Contributions

S.C., G.W. and J.L. conceived and designed the experiments. S.C., G.W. and J.Z. carried out the experiments. Y.L. and L.C. performed and analysed the EBIC experiment. W.Z. performed the lasing measurement by optical pumping. S.C. and J.K. carried out theoretical simulations. J.R. and L.L. contributed material analysis. S.C., G.W. and J.L. co-wrote the paper. J.L. supervised the project.

Corresponding author

Correspondence to Jianlin Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, S., Wang, G., Zhou, W. et al. Electrically pumped waveguide lasing from ZnO nanowires. Nature Nanotech 6, 506–510 (2011). https://doi.org/10.1038/nnano.2011.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing