Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanotube electronics for radiofrequency applications

Abstract

Electronic devices based on carbon nanotubes are among the candidates to eventually replace silicon-based devices for logic applications. Before then, however, nanotube-based radiofrequency transistors could become competitive for high-performance analogue components such as low-noise amplifiers and power amplifiers in wireless systems. Single-walled nanotubes are well suited for use in radiofrequency transistors because they demonstrate near-ballistic electron transport and are expected to have high cut-off frequencies. To achieve the best possible performance it is necessary to use dense arrays of semiconducting nanotubes with good alignment between the nanotubes, but techniques that can economically manufacture such arrays are needed to realize this potential. Here we review progress towards nanotube electronics for radiofrequency applications in terms of device physics, circuit design and the manufacturing challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different ways to align nanotubes.
Figure 2: The nanotube field-effect transistor.
Figure 3: Improvements over time.
Figure 4: Frequency performance of different materials.
Figure 5: Resistance performance.
Figure 6: Mobility performance.
Figure 7: Nanotubes are performing increasingly complex roles in AM radios.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes. (Academic Press, 1996).

    Google Scholar 

  2. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes. (Imperial College Press, 1998).

    Book  Google Scholar 

  3. Zhou, X. J., Park, J. Y., Huang, S. M., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  CAS  Google Scholar 

  4. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  CAS  Google Scholar 

  5. Cao, Q. & Rogers, J. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21, 29–53 (2009).

    Article  CAS  Google Scholar 

  6. Burke, P. J. AC performance of nanoelectronics: Towards a ballistic THz nanotube transistor. Solid State Electron. 40, 1981–1986 (2004).

    Article  CAS  Google Scholar 

  7. Guo, J., Hasan, S., Javey, A., Bosman, G. & Lundstrom, M. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotech. 4, 715–721 (2005).

    Article  Google Scholar 

  8. Alam, K. & Lake, R. Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps. Appl. Phys. Lett. 87, 073104 (2005).

    Article  CAS  Google Scholar 

  9. Hasan, S., Salahuddin, S., Vaidyanathan, M. & Alam, A. A. High-frequency performance projections for ballistic carbon-nanotube transistors. IEEE Trans. Nanotech. 5, 14–22 (2006).

    Article  Google Scholar 

  10. Castro, L. C. et al. Method for predicting fT for carbon nanotube FETs. IEEE Trans. Nanotech. 4, 699–704 (2005).

    Article  Google Scholar 

  11. Yoon, Y., Ouyang, Y. & Guo, J. Effect of phonon scattering on intrinsic delay and cutoff frequency of carbon nanotube FETs. IEEE Trans. Electron Dev. 53, 2467–2470 (2006).

    Article  CAS  Google Scholar 

  12. Baumgardner, J. E. et al. Inherent linearity in carbon nanotube field-effect transistors. Appl. Phys. Lett. 91, 052107 (2007).

    Article  CAS  Google Scholar 

  13. Ural, A., Li, Y. M. & Dai, H. J. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81, 3464–3466 (2002).

    Article  CAS  Google Scholar 

  14. Joselevich, E. & Lieber, C. M. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2, 1137–1141 (2002).

    Article  CAS  Google Scholar 

  15. Huang, S. M., Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).

    Article  CAS  Google Scholar 

  16. Huang, S., Woodson, M., Smalley, R. & Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using fast-heating chemical vapor deposition process. Nano Lett. 4, 1025–1028 (2004).

    Article  CAS  Google Scholar 

  17. Yu, Z., Li, S. & Burke, P. J. Synthesis of aligned arrays of millimeter long, straight single walled carbon nanotubes. Chem. Mater. 16, 3414–3416 (2004).

    Article  CAS  Google Scholar 

  18. Huang, L. et al. Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110, 11103–11109 (2006).

    Article  CAS  Google Scholar 

  19. Ismach, A., Segev, L., Wachtel, E. & Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 43, 6140–6143 (2004).

    Article  CAS  Google Scholar 

  20. Ago, H. et al. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 408, 433–438 (2005).

    Article  CAS  Google Scholar 

  21. Han, S., Liu, X. L. & Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005).

    Article  CAS  Google Scholar 

  22. Kocabas, C. et al. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1, 1110–1116 (2005).

    Article  CAS  Google Scholar 

  23. Ago, H. et al. Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl. Phys. Lett. 90, 123112 (2007).

    Article  CAS  Google Scholar 

  24. Ding, L., Yuan, D. N. & Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 130, 5428–5429 (2008).

    Article  CAS  Google Scholar 

  25. Zhou, W. W., Rutherglen, C. & Burke, P. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Research 1, 158–165 (2008).

    Article  CAS  Google Scholar 

  26. Kang, S. J. et al. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic, applications. Nano Lett. 7, 3343–3348 (2007).

    Article  CAS  Google Scholar 

  27. Zhang, G. et al. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006).

    Article  CAS  Google Scholar 

  28. Yang, C. M. et al. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B. 73, 075419 (2006).

    Article  CAS  Google Scholar 

  29. Ding, L. et al. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 9, 800–805 (2009).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317–321 (2004).

    Article  CAS  Google Scholar 

  31. An, L., Fu, Q., Lu, C. & Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520–10521 (2004).

    Article  CAS  Google Scholar 

  32. Balasubramanian, K., Sordan, R., Burghard, M. & Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827–830 (2004).

    Article  CAS  Google Scholar 

  33. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  34. Collins, P. C., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    Article  CAS  Google Scholar 

  35. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  36. Amlani, I. et al. in 8th IEEE Conf. Nanotech 239–242 (IEEE, 2008).

    Google Scholar 

  37. Lin, A. et al. Threshold voltage and on-off ratio tuning for multiple-tube carbon nanotube FETs. IEEE Trans. Nanotech. 8, 4–9 (2009).

    Article  Google Scholar 

  38. Ryu, K. et al. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 9, 189–197 (2009).

    Article  CAS  Google Scholar 

  39. Shim, H., Song, J., Kwak, Y., Kim, S. & Han, C. Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation. Nanotechnology 20, 065707 (2009).

    Article  CAS  Google Scholar 

  40. Huang, H., Maruyama, R., Noda, K., Kajiura, H. & Kadono, K. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. B 110, 7316–7320 (2006).

    Article  CAS  Google Scholar 

  41. Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129, 4890–4891 (2007).

    Article  CAS  Google Scholar 

  43. Rutherglen, C., Jain, D. & Burke, P. RF resistance and inductance of massively parallel single walled carbon nanotubes: Direct, broadband measurements and near perfect 50 ohm impedance matching. Appl. Phys. Lett. 93, 083119 (2008).

    Article  CAS  Google Scholar 

  44. Krupke, R., Linden, S., Rapp, M. & Hennrich, F. Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18, 1468–1468 (2006).

    Article  CAS  Google Scholar 

  45. Boccaccini, A. R. et al. Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006).

    Article  CAS  Google Scholar 

  46. Morgan, H. & Green, N. G. AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, 2003).

    Google Scholar 

  47. Krupke, R., Hennrich, F., Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    Article  CAS  Google Scholar 

  48. Krupke, R., Hennrich, F., Kappes, M. & Lohneysen, H. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1400 (2004).

    Article  CAS  Google Scholar 

  49. Baik, S., Usrey, M., Rotkina, L. & Strano, M. Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J. Phys. Chem. B 108, 15560–15564 (2004).

    Article  CAS  Google Scholar 

  50. Kim, Y. et al. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. J. Phys. Chem. B 110, 1541–1545 (2006).

    Article  CAS  Google Scholar 

  51. LeMieux, M. C. et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science 321, 101–104 (2008).

    Article  CAS  Google Scholar 

  52. Engel, M. et al. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2, 2445–2452 (2008).

    Article  CAS  Google Scholar 

  53. Sharma, R., Lee, C. Y., Choi, J. H., Chen, K. & Strano, M. S. Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets. Nano Lett. 7, 2693–2700 (2007).

    Article  CAS  Google Scholar 

  54. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M. & Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).

    Article  CAS  Google Scholar 

  55. Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101 (2005).

    Article  CAS  Google Scholar 

  56. Liu, W. Fundamentals of III-V devices: HBTs, MESFETs, and HFETs/HEMTs. (Wiley, 1999).

    Google Scholar 

  57. Gupta, M. S. Power gain in feedback amplifiers, a classic revisited. IEEE Trans. Microw. Theory 40, 864–879 (1992).

    Article  Google Scholar 

  58. Schwierz, F. & Liou, J. J. Modern Microwave Transistors: Theory, Design, and Performance. (Wiley-Interscience, 2003).

    Google Scholar 

  59. Akinwande, D., Close, G. E. & Wong, H. S. P. Analysis of the frequency response of carbon nanotube transistors. IEEE Trans. Nanotech. 5, 599–605 (2006).

    Article  Google Scholar 

  60. Wang, D., Yu, Z., McKernan, S. & Burke, P. Ultra high frequency carbon nanotube transistor based on a single nanotube. IEEE Trans. Nanotech. 6, 400–403 (2007).

    Article  Google Scholar 

  61. Chaste, J. et al. Single carbon nanotube transistor at GHz frequency. Nano Lett. 8, 525–528 (2008).

    Article  CAS  Google Scholar 

  62. Chen, Y. F. & Fuhrer, M. S. Electric field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005).

    Article  CAS  Google Scholar 

  63. Kocabas, C. et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 8, 1937–1943 (2009).

    Article  CAS  Google Scholar 

  64. Lundstrom, M. Elementary scattering theory of the Si MOSFET. IEEE Electr. Device Lett. 18, 361–363 (1997).

    Article  CAS  Google Scholar 

  65. Schwierz, F. & Liou, J. J. RF transistors: Recent developments and roadmap toward terahertz applications. Solid State Electron. 51, 1079–1091 (2007).

    Article  CAS  Google Scholar 

  66. Cao, Q. et al. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 90, 023516 (2007).

    Article  CAS  Google Scholar 

  67. Castro, L. C. & Pulfrey, D. L. Extrapolated fmax for carbon nanotube field-effect transistors. Nanotechnology 17, 300–304 (2006).

    Article  CAS  Google Scholar 

  68. Nougaret, L. et al. 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009).

    Article  CAS  Google Scholar 

  69. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  70. Javey, A., Wang, Q., Ural, A., Li, Y. M. & Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).

    Article  CAS  Google Scholar 

  71. Chen, Z. H. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735–1735 (2006).

    Article  CAS  Google Scholar 

  72. Narita, K., Hongo, H., Ishida, M. & Nihey, F. High-frequency performance of multiple-channel carbon nanotube transistors. Phys. Status Solidi A 204, 1808–1813 (2007).

    Article  CAS  Google Scholar 

  73. Bethoux, J. M. et al. Active properties of carbon nanotube field-effect transistors deduced from S parameters measurements. IEEE Trans. Nanotech. 5, 336–342 (2006).

    Article  Google Scholar 

  74. Bethoux, J. M. et al. An 8-GHz fT carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron Dev. Lett. 27, 681–683 (2006).

    Article  CAS  Google Scholar 

  75. Louarn, A. L. et al. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 90, 233108 (2007).

    Article  CAS  Google Scholar 

  76. Kocabas, C. et al. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl Acad. Sci. USA 105, 1405–1409 (2008).

    Article  CAS  Google Scholar 

  77. Chimot, N. et al. Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 91, 153111 (2007).

    Article  CAS  Google Scholar 

  78. Burke, P. J. Nanotubes and Nanowires (World Scientific, 2007).

    Book  Google Scholar 

  79. Rutherglen, C. Carbon Nanotube Based Analog RF Devices PhD thesis, Univ. California, Irvine (2009).

    Google Scholar 

  80. Dimitrov, V. et al. Small-signal performance and modeling of sub-50 nm nMOSFETs with fT above 460 GHz. Solid State Electron. 52, 899–908 (2008).

    Article  CAS  Google Scholar 

  81. Stork, J. in Proc. Symp. VLSI Tech. Dig. 1–2 (IEEE, 2006).

    Google Scholar 

  82. Lee, S. et al. in Electron Devices Meeting IEDM 255–258 (IEEE, 2007).

    Google Scholar 

  83. Yeon, S., Park, M., Choi, J. & Seo, K. in Electron Devices Meeting IEDM 613–616 (IEEE, 2007).

    Google Scholar 

  84. Moon, J. S. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electr. Device Lett. 30, 650–652 (2009).

    Article  CAS  Google Scholar 

  85. Lin, Y. et al. Operation of graphene transistor at gigahertz frequencies. Nano Lett. 9, 422–426 (2009).

    Article  CAS  Google Scholar 

  86. Meric, I., Baklitskaya, P., Kim, P. & Shepard, K. RF performance of top-gated, zero-bandgap graphene field-effect transistor. Electron Devices Meeting IEDM 1–4 (IEEE, 2008).

  87. Rutherglen, C. & Burke, P. Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small 5, 884–906 (2009).

    Article  CAS  Google Scholar 

  88. Li, S., Yu, Z., Yen, S. F., Tang, W. C. & Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004).

    Article  CAS  Google Scholar 

  89. Li, S. D., Yu, Z., Rutherglen, C. & Burke, P. J. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett. 4, 2003–2007 (2004).

    Article  CAS  Google Scholar 

  90. Park, J. Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  91. Hong, B. H. et al. Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc. 127, 15336–15337 (2005).

    Article  CAS  Google Scholar 

  92. Purewal, M. S. et al. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808 (2007).

    Article  CAS  Google Scholar 

  93. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  94. Javey, A., Qi, P. F., Wang, Q. & Dai, H. J. Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc. Natl Acad. Sci. USA 101, 13408–13410 (2004).

    Article  CAS  Google Scholar 

  95. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  CAS  Google Scholar 

  96. Snow, E. S., Novak, J. P., Campbell, P. M. & Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82, 2145–2147 (2003).

    Article  CAS  Google Scholar 

  97. Zhou, Y. et al. P-channel, n-channel thin film transistors and p–n diodes based on single wall carbon nanotube networks. Nano Lett. 4, 2031–2036 (2004).

    Article  CAS  Google Scholar 

  98. Ozel, T., Gaur, A., Rogers, J. & Shim, M. Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett. 5, 905–911 (2005).

    Article  CAS  Google Scholar 

  99. Hur, S. et al. Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98, 114302 (2005).

    Article  CAS  Google Scholar 

  100. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  101. Ishikawa, F. N. et al. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 3, 73–79 (2009).

    Article  CAS  Google Scholar 

  102. Kocabas, C., Kang, S. J., Ozel, T., Shim, M. & Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 111, 17879–17886 (2007).

    Article  CAS  Google Scholar 

  103. Cao, Q., Xia, M., Shim, M. & Rogers, J. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv. Funct. Mater. 16, 2355–2362 (2006).

    Article  CAS  Google Scholar 

  104. Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005).

    Article  CAS  Google Scholar 

  105. Kanungo, M., Lu, H., Malliaras, G. & Blanchet, G. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 323, 234–237 (2009).

    Article  CAS  Google Scholar 

  106. Bao, Z. & Locklin, J. J. Organic Field-Effect Transistors (CRC Press, 2007).

    Book  Google Scholar 

  107. Noh, Y. Y., Zhao, N., Caironi, M. & Sirringhaus, H. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nature Nanotech. 2, 784–789 (2007).

    Article  CAS  Google Scholar 

  108. Subramanian, V. et al. Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005).

    Article  CAS  Google Scholar 

  109. Rutherglen, C. & Burke, P. Carbon nanotube radio. Nano Lett. 7, 3296–3299 (2007).

    Article  CAS  Google Scholar 

  110. Jensen, K., Weldon, J., Garcia, H. & Zettl, A. Nanotube radio. Nano Lett. 7, 3508–3511 (2007).

    Article  CAS  Google Scholar 

  111. O, K. et al., On-chip antennas in silicon ICs and their application. IEEE Trans. Electron Dev. 52, 1312–1323 (2005).

    Article  CAS  Google Scholar 

  112. Burke, P. J., Li, S. D. & Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotech. 5, 314–334 (2006).

    Article  Google Scholar 

  113. Hanson, G. W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antenn. Propag. 53, 3426–3435 (2005).

    Article  Google Scholar 

  114. Burke, P. & Rutherglen, C. Towards a single-chip, implantable RFID system: Is a single-cell radio possible? Biomed. Microdevices doi: 10.1007/s10544-008-9266-4 (2009).

  115. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. doi: 10.1021/nl902788u (2009).

Download references

Acknowledgements

This work was funded by the National Science Foundation, the Army Research Office, the Office of Naval Research, Northrop Grumman and the Korean National Science Foundation (KOSEF) World Class University (WCU) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Burke.

Ethics declarations

Competing interests

P.B. is an advisor for and holds equity in RF Nano Corporation, which is commercializing carbon nanotube electronics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nature Nanotech 4, 811–819 (2009). https://doi.org/10.1038/nnano.2009.355

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing