Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents

Abstract

Carbon nanotubes have shown promise as contrast agents for photoacoustic and photothermal imaging of tumours and infections because they offer high resolution and allow deep tissue imaging. However, in vivo applications have been limited by the relatively low absorption displayed by nanotubes at near-infrared wavelengths and concerns over toxicity. Here, we show that gold-plated carbon nanotubes—termed golden carbon nanotubes—can be used as photoacoustic and photothermal contrast agents with enhanced near-infrared contrast (102-fold) for targeting lymphatic vessels in mice using extremely low laser fluence levels of a few mJ cm−2. Antibody-conjugated golden carbon nanotubes were used to map the lymphatic endothelial receptor, and preliminary in vitro viability tests show golden carbon nanotubes have minimal toxicity. This new nanomaterial could be an effective alternative to existing nanoparticles and fluorescent labels for non-invasive targeted imaging of molecular structures in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM and TEM image analyses.
Figure 2: Absorption spectra of carbon nanotubes and GNTs, and PA and PT analyses of GNTs.
Figure 3: Comparison of PA signals and bubble thresholds among various nanoparticles.
Figure 4: Schematics of GNT-assisted PA/PT molecular diagnostics and therapeutics.
Figure 5: In vivo molecular targeting of murine lymphatics with GNTs guided by an integrated PA/PT technique.

References

  1. Zharov, V. P., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897–4899 (2003).

    Article  CAS  Google Scholar 

  2. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  Google Scholar 

  3. Zharov, V. P., Galitovskaya, E. N., Jonson, C. & Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Laser Surg. Med. 37, 219–226 (2005).

    Article  Google Scholar 

  4. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  5. Zharov, V. P., Mercer, K. E., Galitovskaya, E. N. & Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627 (2006).

    Article  CAS  Google Scholar 

  6. Everts, M. et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587–591 (2006).

    Article  CAS  Google Scholar 

  7. Khlebtsov, B. N., Zharov, V. P., Melnikov, A. G., Tuchin, V. V. & Khlebtsov, N. G. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17, 5167–5179 (2006).

    Article  CAS  Google Scholar 

  8. Gobin, A. M. et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007).

    Article  CAS  Google Scholar 

  9. Chen, J. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–1322 (2007).

    Article  CAS  Google Scholar 

  10. Eghtedari, M. et al. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7, 1914–1918 (2007).

    Article  CAS  Google Scholar 

  11. Zharov, V. P., Kim, J. -W., Everts, M. & Curiel, D. T. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1, 326–345 (2005).

    Article  CAS  Google Scholar 

  12. Zharov, V. P. & Lapotko, D. O. Photothermal imaging of nanoparticles and cells. IEEE J. Sel. Top. Quant. Electron. 11, 733–751 (2005).

    Article  CAS  Google Scholar 

  13. Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006).

    Article  CAS  Google Scholar 

  14. Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).

    Article  Google Scholar 

  15. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Laser Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  16. Zharov, V. P., Galanzha, E. I., Shashkov, E. V., Khlebtsov, N. & Tuchin, V. In vivo photoacoustic flow cytometry for monitoring circulating single cancer cells and contrast agents. Opt. Lett. 31, 3623–3625 (2006).

    Article  Google Scholar 

  17. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  18. Zharov, V. P. et al. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens and contrast dyes in vivo. J. Biomed. Opt. 12, 051503 (2007).

    Article  Google Scholar 

  19. Kim, J.-W., Galanzha, E. I., Shashkov, E. V., Kotagiri, N. & Zharov, V. P. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Laser Surg. Med. 39, 622–634 (2007).

    Article  Google Scholar 

  20. Galanzha, E. I., Shashkov, E. V., Tuchin, V. V. & Zharov, V. P. In vivo multiparameter multispectral photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry A 73, 884–894 (2008).

    Article  Google Scholar 

  21. Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotech. 3, 557–562 (2008).

    Article  Google Scholar 

  22. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  23. Schipper, M. L. et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotech. 3, 216–221 (2008).

    Article  CAS  Google Scholar 

  24. Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    Article  CAS  Google Scholar 

  25. Karpanen, T. & Alitalo, K. Molecular biology and pathology of lymphangiogenesis. Annu. Rev. Pathol. 3, 367–397 (2008).

    Article  CAS  Google Scholar 

  26. Brown, P. Lymphatic system: unlocking the drains. Nature 436, 456–458 (2005).

    Article  CAS  Google Scholar 

  27. Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    Article  CAS  Google Scholar 

  28. Cueni, L. N. & Detmar, M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Invest. Dermatol. 126, 2167–2177 (2006).

    Article  CAS  Google Scholar 

  29. Prevo, R., Banerji, S., Ferguson, D. J., Clasper, S. & Jackson, D. G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 276, 19420–19430 (2001).

    Article  CAS  Google Scholar 

  30. McElroy, M. et al. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. J. Surg. Res. 151, 68–73 (2009).

    Article  CAS  Google Scholar 

  31. Slavik, J. Fluorescence Microscopy and Fluorescent Probes (Plenum Press, 1996).

    Book  Google Scholar 

  32. Contag, P. R., Olomu, I. N., Stevenson, D. K. & Contag, C. H. Bioluminescent indicators in living mammals. Nature Med. 4, 245–247 (1998).

    Article  CAS  Google Scholar 

  33. Nolte, M. A., Kraal, G. & Mebius, R. E. Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo. Cytometry A 61, 35–44 (2004).

    Article  Google Scholar 

  34. Zhang, J. L., Yokoyama, S. & Ohhashi, T. Inhibitory effects of fluorescein isothiocyanate photoactivation on lymphatic pump activity. Microvasc. Res. 54, 99–107 (1997).

    Article  CAS  Google Scholar 

  35. American National Standard for Safe Use of Lasers. ANSI Z136 1 (2000).

  36. Shashkov, E. V., Everts, M., Galanzha, E. I. & Zharov, V. P. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett. 8, 3953–3958 (2008).

    Article  CAS  Google Scholar 

  37. Galanzha, E. I., Tuchin, V. V. & Zharov, V. P. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy and drug screening (review). World J. Gastroenterol. 13, 192–218 (2007).

    Article  Google Scholar 

  38. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  Google Scholar 

  39. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008).

    Article  CAS  Google Scholar 

  40. Jan, E. et al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano 2, 928–938 (2008).

    Article  CAS  Google Scholar 

  41. Pernodet, N. et al. Effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2, 766–773 (2006).

    Article  CAS  Google Scholar 

  42. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    Article  CAS  Google Scholar 

  43. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

    Article  CAS  Google Scholar 

  44. Swanson, J. N. Repeated colloidal gold tests in rheumatoid arthritis. Ann. Rheum. Dis. 8, 232–237 (1949).

    Article  CAS  Google Scholar 

  45. Smith, B. R. et al. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett. 8, 2599–2606 (2008).

    Article  CAS  Google Scholar 

  46. Valadon, P. et al. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc. Natl Acad. Sci. USA 103, 407–412 (2006).

    Article  CAS  Google Scholar 

  47. He, W., Wang, H., Hartmann, L. C., Cheng, J. X. & Low, P. S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl Acad. Sci. USA 104, 11760–11765 (2007).

    Article  CAS  Google Scholar 

  48. Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).

    Article  CAS  Google Scholar 

  49. Partanen, T. A. & Paavonen, K. Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc. Res. Tech. 55, 108–121 (2001).

    Article  CAS  Google Scholar 

  50. Kim, J.-W., Kotagiri, N., Kim, J.-H. & Deaton, R. In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester. Appl. Phys. Lett. 88, 213110 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institute of Health grant nos R01EB000873, R01EB009230, R01CA131164, R21EB005123 and R21CA139373, National Science Foundation grant nos DBI-0852737 and CMMI-0709121 and the Arkansas Biosciences Institute. The authors thank R. Goforth and R. Deaton for their helpful discussions regarding this study. The authors also thank D. Lapotko for his assistance in setting up the PT microscope, N. Khlebtsov for providing gold nanorods and gold nanoshells, H.-J. Kim for her assistance in image processing and T.F. Garrison, J.-H. Kim, N. Kotagiri and J.S. Lee for their assistance with AFM and TEM imaging and sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.-W.K. and V.P.Z. conceived and designed the experiments. All authors performed the experiments and discussed the results. J.-W.K., E.I.G and V.P.Z. co-wrote the paper.

Corresponding authors

Correspondence to Jin-Woo Kim or Vladimir P. Zharov.

Supplementary information

Supplementary information

Supplementary information (PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JW., Galanzha, E., Shashkov, E. et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotech 4, 688–694 (2009). https://doi.org/10.1038/nnano.2009.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing