Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alternating current Josephson effect and resonant superconducting transport through vibrating Nb nanowires

Abstract

In 1962, Josephson made a celebrated prediction: when a constant voltage is applied across a thin insulator separating two superconductors, it will generate an oscillating current1. These oscillations are ubiquitous in superconducting weak links of various geometries, and analogues have been found in other macroscopic quantum systems, such as superfluids2,3,4 and gaseous Bose-Einstein condensates5. The interplay between the oscillating current and external microwave radiation of matching frequency (Shapiro steps6) or with internal electrodynamic resonances (Fiske effect7) appear as changes in the current–voltage characteristics of superconducting tunnel junctions and provide further insight into the phenomenon. Here, we report measurements and theoretical studies suggesting that Josephson current oscillations interact with atomic-scale mechanical motion as well. We formed a niobium dimer nanowire that acts as a weak link between two superconducting (bulk) niobium electrodes8. We find features in the differential conductance through the dimer which we believe correspond to excitations of the dimer vibrational modes by Josephson oscillations and support our results with theoretical simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic structure and electronic transport in Nb2 junctions.
Figure 2: Characterization of dimer vibrational eigenmodes and their interaction with Josephson oscillations.
Figure 3: Differential conductance versus voltage measured at 4.2 K in a symmetric dimer contact.

Similar content being viewed by others

References

  1. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  2. Richards, P. L. & Anderson, P. W. Observation of the analog of the ac Josephson effect in superfluid helium. Phys. Rev. Lett. 14, 540–543 (1965).

    Article  CAS  Google Scholar 

  3. Pereverzev, S. V., Loshak, A., Backhaus, S., Davis, J. C. & Packard, R. E. Quantum oscillations between two weakly coupled reservoirs of superfluid 3He. Nature 388, 449–451 (1997).

    Article  CAS  Google Scholar 

  4. Hoskinson, E. & Packard, R. E. Thermally driven Josephson oscillations in superfluid 4He. Phys. Rev. Lett. 94, 155303 (2005).

    Article  CAS  Google Scholar 

  5. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

    Article  CAS  Google Scholar 

  6. Shapiro, S. Josephson currents in superconducting tunneling: The effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).

    Article  CAS  Google Scholar 

  7. Coon, D. D. & Fiske, M. D. Josephson ac and step structure in the supercurrent tunneling characteristic. Phys. Rev. 138, A744–A746 (1965).

    Article  Google Scholar 

  8. Marchenkov, A., Dai, Z., Zhang, C., Barnett, R. N. & Landman, U. Atomic dimer shuttling and two-level conductance fluctuations in Nb nanowires. Phys. Rev. Lett. 98, 046802 (2007).

    Article  CAS  Google Scholar 

  9. Langenberg, D. N., Parker, W. H. & Taylor, B. N. Experimental test of the Josephson frequency-voltage relation. Phys. Rev. 150, 186–188 (1966).

    Article  CAS  Google Scholar 

  10. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  Google Scholar 

  11. Klapwijk, T. M., Blonder, G. E. & Tinkham, M. Explanation of subharmonic energy gap structure in superconducting contacts. Physica B 109, 110, 1657–1664 (1982).

    Article  Google Scholar 

  12. Averin, D. & Bardas, A. ac Josephson effect in a single quantum channel. Phys. Rev. Lett. 75, 1831–1834 (1995).

    Article  CAS  Google Scholar 

  13. Cuevas, J. C., Martín-Rodero, A. & Levy Yeyati, A. Hamiltonian approach to the transport properties of superconducting quantum point contacts. Phys. Rev. B 54, 7366–7379 (1996).

    Article  CAS  Google Scholar 

  14. Bratus’, E. N., Shumeiko, V. S., Bezuglyi, E. V. & Wendin, G. dc-current transport and ac Josephson effect in quantum junctions at low voltage. Phys. Rev. B 55, 12666–12677 (1997).

    Article  CAS  Google Scholar 

  15. Scheer, E., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997).

    Article  CAS  Google Scholar 

  16. Ludoph, B. et al. Multiple Andreev reflection in single atom niobium junctions. Phys. Rev. B 61, 8561–8569 (2000).

    Article  CAS  Google Scholar 

  17. Dai, Z. & Marchenkov, A. Subgap structure in resistively shunted superconducting atomic point contacts. Appl. Phys. Lett. 88, 203120 (2006).

    Article  CAS  Google Scholar 

  18. Chauvin, M. et al. Superconducting atomic contacts under microwave irradiation. Phys. Rev. Lett. 97, 067006 (2006).

    Article  CAS  Google Scholar 

  19. Naidyuk, Y. G. & Yanson, I. K. Point-Contact Spectroscopy (Springer, New York, 2004).

    Google Scholar 

  20. Park, H. et al. Nanomechanical oscillations in a single C60 transistor. Nature 407, 57 (2000).

    Article  CAS  Google Scholar 

  21. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  22. LeRoy, B. J., Lemay, S. G., Kong, J. & Dekker, C. Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004).

    Article  CAS  Google Scholar 

  23. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    Article  CAS  Google Scholar 

  24. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  CAS  Google Scholar 

  25. Zhitenev, N. B., Meng, H. & Bao, Z. Conductance of small molecular junctions. Phys. Rev. Lett. 88, 226801 (2002).

    Article  CAS  Google Scholar 

  26. Agraït, N., Untíedt, C., Rubio-Bollinger, G. & Vieira, S. Onset of dissipation in ballistic atomic wires. Phys. Rev. Lett. 88, 216803 (2002).

    Article  CAS  Google Scholar 

  27. Berberich, P., Buemann, R. & Kinder, H. Monochromatic phonon generation by the Josephson effect. Phys. Rev. Lett. 49, 1500–1503 (1982).

    Article  CAS  Google Scholar 

  28. Schlenga, K. et al. Subgap structures in intrinsic Josephson junctions of Tl2Ba2Ca2Cu3O10+δ and Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 76, 4943–4946 (1996).

    Article  CAS  Google Scholar 

  29. Koch, J., Semmelchak, M., von Oppen, F. & Nitzan, A. Current-induced nonequilibrium vibrations in single-molecule devices. Phys. Rev. B 73, 155306 (2006).

    Article  CAS  Google Scholar 

  30. McDonald, D. G., Evenson, K. M., Wells, J. S. & Cupp, J. D. High-frequency limit of the Josephson effect. J. Appl. Phys. 42, 179–181 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Georgia Institute of Technology through the Nanoscience/Nanoengineering Research Program (NNRP) and the US National Science Foundation CAREER grant no. DMR-0349110 (Z.D., B.D. and A.M.). The work of R.N.B. and U.L. is supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexei Marchenkov or Uzi Landman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchenkov, A., Dai, Z., Donehoo, B. et al. Alternating current Josephson effect and resonant superconducting transport through vibrating Nb nanowires. Nature Nanotech 2, 481–485 (2007). https://doi.org/10.1038/nnano.2007.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.218

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing