Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perceptual learning improves efficiency by re-tuning the decision 'template' for position discrimination

Abstract

Visual position discrimination improves with practice; however, the mechanism(s) underlying this improvement are not yet known. We used positional noise to explore the underlying neural mechanisms and found that position discrimination improved with practice over a range of noise levels. This improvement can be largely explained by an increasing efficiency with which observers used positional information in the stimulus. In a second experiment, we tested the hypothesis that the improved efficiency reflects a re-tuning of the observers' perceptual 'template'—the weightings of inputs from basic visual mechanisms—to more closely match the ideal template required to perform the perceptual task. Using a new technique to measure which parts of the stimulus influenced the observer's performance, we were able to record the re-tuning of the decision template across training sessions; we found a robust and steady increase in template efficiency during learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three possible mechanisms for visual learning.
Figure 2: Stimuli with positional noise.
Figure 3: Effect of learning on position discrimination.
Figure 4: Effect of learning on equivalent noise and efficiency.
Figure 5: The changing templates across training sessions.
Figure 6: Template retuning.

Similar content being viewed by others

References

  1. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  Google Scholar 

  2. Vogels, R. & Orban, G.A. The effect of practice on the oblique effect in line orientation judgements. Vision Res. 25, 1679–1687 (1985).

    Article  CAS  Google Scholar 

  3. Fahle, M. & Morgan, M. No transfer of perceptual learning between similar stimuli in the same retinal position. Curr. Biol. 6, 292–297 (1996).

    Article  CAS  Google Scholar 

  4. McKee, S.P. & Westheimer, G.W. Improvement in vernier acuity with practice. Percept. Psychophys. 24, 258–262 (1978).

    Article  CAS  Google Scholar 

  5. O'Toole, A.J. & Kersten, D.J. Learning to see random-dot stereograms. Perception 21, 227–243 (1992).

    Article  CAS  Google Scholar 

  6. Ball, K. & Sekular, R. A specific and enduring improvement in visual motion discrimination. Science 218, 697–698 (1982).

    Article  CAS  Google Scholar 

  7. Schoups, A.A. & Orban, G.A. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc. Natl. Acad. Sci. USA 93, 7358–7362 (1996).

    Article  CAS  Google Scholar 

  8. Furmanski, C.S. & Engel, S.A. Perceptual learning in object recognition: object specificity and size invariance. Vision Res. 40, 473–484 (2000).

    Article  CAS  Google Scholar 

  9. Gold, J., Bennett, P.J. & Sekuler, A.B. Signal but not noise changes with perceptual learning. Nature 402 (1999).

  10. Dosher, B.A. & Lu, Z.L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. USA 95, 13988–13993 (1998).

    Article  CAS  Google Scholar 

  11. Dosher, B.A. & Lu, Z.L. Mechanisms of perceptual learning. Vision Res. 39, 3197–3221 (1999).

    Article  CAS  Google Scholar 

  12. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1024 (1992).

    Article  CAS  Google Scholar 

  13. Fahle, M., Edelman, S. & Poggio, T. Fast perception learning in hyperacuity. Vision Res. 35, 3003–3013 (1995).

    Article  CAS  Google Scholar 

  14. Fahle, M. & Edelman, S. Long-term learning in vernier acuity: Effects of stimulus orientation, range and of feedback. Vision Res. 33, 397–412 (1993).

    Article  CAS  Google Scholar 

  15. Wang, H., Levi, D.M. & Klein, S.A. Intrinsic uncertainty and integration efficiency in bisection acuity. Vision Res. 36, 717–739 (1996).

    Article  CAS  Google Scholar 

  16. Levi, D.M., Klein, S.A. & Carney, T. Unmasking the mechanisms for Vernier acuity: evidence for a template model for Vernier acuity. Vision Res. 40, 951–972 (2000).

    Article  CAS  Google Scholar 

  17. Saarinen, J. & Levi, D.M. Perceptual learning in vernier acuity: What is learned? Vision Res. 35, 519–527 (1995).

    Article  CAS  Google Scholar 

  18. Levi, D. & Klein, S.A. The role of sepration and eccentricity in encoding position. Vision Res. 30, 557–585 (1990).

    Article  CAS  Google Scholar 

  19. Green, D.M. Consistency of auditory detection judgments. Psychol Rev. 71, 392–407 (1964).

    Article  CAS  Google Scholar 

  20. Zeevi, Y.Y. & Mangoubi, S.S. Vernier acuity with noisy lines: estimation of relative position uncertainty. Biol. Cybern. 50, 371–376 (1984).

    Article  CAS  Google Scholar 

  21. Pelli, D.G. The quantum efficiency of vision. in Vision: Coding and Efficiency (ed., Blakemore, C.) 3–25 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  22. Carkeet, A., Levi, D.M. & Manny, R.E. Development of Vernier acuity in childhood. Optom. Vis. Sci. 74, 741–750 (1997).

    Article  CAS  Google Scholar 

  23. Beard, B.L. & Ahumada, A.J. A technique to extract relevant image features for visual tasks. Proc. Hum. Vis. Electronic Imaging III SPIE 3299, 79–85 (1998).

    Google Scholar 

  24. Levi, D.M. & Klein, S.A. Classification images for detection and position discrimination in the fovea and parafovea. J. Vis. 2, 46–65 (2002).

    Article  Google Scholar 

  25. Murray, R.F., Bennett, P. & Sekuler, A.B. Optimal methods for calculating classification images: weighted sums. J. Vis. 2, 79–104 (2002).

    Article  Google Scholar 

  26. Ahumada, A.J. Classification image weights and internal noise level estimation. J. Vis. 2, 121–131 (2002).

    Article  Google Scholar 

  27. Gold, J.M., Murray, R.F., Bennett, P.J. & Sekuler, A. Deriving behavioural receptive fields for visually completed contours. Curr. Biol. 10, 663–666 (2000).

    Article  CAS  Google Scholar 

  28. Lu, Z.L., Lesmes, L.A. & Dosher, B.A. Spatial attention excludes external noise at the target location. J. Vis. 2, 312–323 (2002).

    Article  Google Scholar 

  29. Gold, J.M., Sekuler, A.B. & Bennett, P.J. Visualizing perceptual learning. Cogn. Sci. (in press).

  30. Solomon, J.A. Noise reveals visual mechanisms of detection and discrimination. J. Vis. 2, 105–120 (2002).

    Article  Google Scholar 

  31. Gilbert, C.D. & Wiesel, T.N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  CAS  Google Scholar 

  32. Chino, Y.M., Kaas, J.H., Smith, E.L.I., Langston, A.L. & Cheng, H. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Res. 32, 789–796 (1992).

    Article  CAS  Google Scholar 

  33. Skrandies, W., Lang, G. & Jedynak, A. Sensory thresholds and neurophysiological correlates of human perceptual learning. Spat. Vis. 9, 475–489 (1996).

    Article  CAS  Google Scholar 

  34. Skrandies, W., Jedynak, A. & Fahle, M. Perceptual learning: psychophysical thresholds and electrical brain topography. Int. J. Psychophysiol. 41, 119–129 (2001).

    Article  CAS  Google Scholar 

  35. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  Google Scholar 

  36. Ghose, G.M., Yang, T. & Maunsell, J.H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2001).

    Article  Google Scholar 

  37. Schiltz, C. et al. Neuronal mechanisms of perceptual learning: changes in human brain activity with training in orientation discrimination. Neuroimage 9, 46–62 (1999).

    Article  CAS  Google Scholar 

  38. Kassubek, J., Schmidtke, K., Kimmig, H., Lucking, C.H. & Greenlee, M.W. Changes in cortical activation during mirror reading before and after training: an fMRI study of procedural learning. Brain Res. Cogn. Brain Res. 10, 207–217 (2001).

    Article  CAS  Google Scholar 

  39. Herzog, M.H. & Fahle, M. The role of feedback in learning a vernier discrimination task. Vision Res. 37, 2133–2141 (1997).

    Article  CAS  Google Scholar 

  40. Wickens, T.D. Elementary Signal Detection Theory (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  41. Ahumada, A.J. & Lovell, J. Stimulus features in signal detection. J. Acoust. Soc. Am. 49, 1751–1756 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants R01EY01728 and R01EY04776 from the National Eye Institute. The authors thank E. Bassett, S. Gepshtein, A. Popple, J. Saarinen, K. Young and E. Wong for their comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis M Levi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Levi, D. & Klein, S. Perceptual learning improves efficiency by re-tuning the decision 'template' for position discrimination. Nat Neurosci 7, 178–183 (2004). https://doi.org/10.1038/nn1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing